Preparation and quantitative analysis of multicenter luminescence materials for sensing function

Potyrailo, R. A. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 116, 11877–11923 (2016).

Article  CAS  PubMed  Google Scholar 

Li, Z., Askim, J. R. & Suslick, K. S. The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem. Rev. 119, 231–292 (2019).

Article  CAS  PubMed  Google Scholar 

Mako, T. L., Racicot, J. M. & Levine, M. Supramolecular luminescent sensors. Chem. Rev. 119, 322–477 (2019).

Article  CAS  PubMed  Google Scholar 

Li, H. Y., Zhao, S. N., Zang, S. Q. & Li, J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 49, 6364–6401 (2020).

Article  CAS  PubMed  Google Scholar 

Zhang, X. N., Ward, B. B. & Sigman, D. M. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem. Rev. 120, 5308–5351 (2020).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51, 3759–3793 (2022).

Article  CAS  PubMed  Google Scholar 

Koklu, A. et al. Organic bioelectronic devices for metabolite sensing. Chem. Rev. 122, 4581–4635 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. Preparation of novel chiral stationary phases based on the chiral porous organic cage by thiol-ene click chemistry for enantioseparation in HPLC. Anal. Chem. 94, 4961–4969 (2022).

Article  CAS  PubMed  Google Scholar 

Zhao, Y., Zeng, H., Zhu, X. W., Lu, W. & Li, D. Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chem. Soc. Rev. 50, 4484–4513 (2021).

Article  CAS  PubMed  Google Scholar 

Whiting, G. T., Nikolopoulos, N., Nikolopoulos, I., Chowdhury, A. D. & Weckhuysen, B. M. Visualizing pore architecture and molecular transport boundaries in catalyst bodies with fluorescent nanoprobes. Nat. Chem. 11, 23–31 (2019).

Article  CAS  PubMed  Google Scholar 

Wales, D. J. et al. Gas sensing using porous materials for automotive applications. Chem. Soc. Rev. 44, 4290–4321 (2015).

Article  CAS  PubMed  Google Scholar 

Gu, L. L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

Article  CAS  PubMed  Google Scholar 

Zhou, J. J., Chizhik, A. I., Chu, S. & Jin, D. Y. Single-particle spectroscopy for functional nanomaterials. Nature 579, 41–50 (2020).

Article  CAS  PubMed  Google Scholar 

Kumar, R. et al. Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem. Rev. 119, 9657–9721 (2019).

Article  CAS  PubMed  Google Scholar 

Zhang, T., Zhou, L. P., Guo, X. Q., Cai, L. X. & Sun, Q. F. Adaptive self-assembly and induced-fit transformations of anion-binding metal–organic macrocycles. Nat. Commun. 8, 15898 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin, Y., Liu, X., Jia, P. P., Xu, L. & Yang, H. B. BODIPY-based macrocycles. Chem. Soc. Rev. 49, 5678–5703 (2020).

Article  CAS  Google Scholar 

Lustig, W. P. et al. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017).

Article  CAS  PubMed  Google Scholar 

Li, Z. J. et al. Achieving gas pressure-dependent luminescence from an AIEgen-based metal–organic framework. Nat. Commun. 13, 2142 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, B. et al. A stable zirconium based metal–organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nat. Commun. 10, 3861 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Meng, Z. & Mirica, K. A. Covalent organic frameworks as multifunctional materials for chemical detection. Chem. Soc. Rev. 50, 13498–13558 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, R. Y. et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120–242 (2021).

Article  CAS  PubMed  Google Scholar 

Kulkarni, R. et al. Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework. Nat. Commun. 10, 3228 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Lin, R. B. et al. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 48, 1362–1389 (2019).

Article  CAS  PubMed  Google Scholar 

Wang, B. et al. Microporous hydrogen-bonded organic framework for highly efficient turn-up fluorescent sensing of aniline. J. Am. Chem. Soc. 142, 12478–12485 (2020).

Article  CAS  PubMed  Google Scholar 

Wu, S. Y. et al. Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal–organic framework sensor. Adv. Funct. Mater. 28, 1707169 (2018).

Article  Google Scholar 

Rao, X. et al. A highly sensitive mixed lanthanide metal–organic framework self-calibrated luminescent thermometer. J. Am. Chem. Soc. 135, 15559–15564 (2013).

Article  CAS  PubMed  Google Scholar 

Hu, Z. et al. Effective detection of mycotoxins by a highly luminescent metal–organic framework. J. Am. Chem. Soc. 137, 16209–16215 (2015).

Article  CAS  PubMed  Google Scholar 

Chen, L. et al. Ultrafast water sensing and thermal imaging by a metal–organic framework with switchable luminescence. Nat. Commun. 8, 15985 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, J. C. et al. Confinement of pyridinium hemicyanine dye within an anionic metal–organic framework for two-photon-pumped lasing. Nat. Commun. 4, 2719 (2013).

Article  PubMed  Google Scholar 

Sun, C. Y. et al. Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation. Nat. Commun. 4, 2717 (2013).

Article  PubMed  Google Scholar 

Hao, J. N. & Yan, B. Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal–organic framework sensor. Adv. Funct. Mater. 27, 1603856 (2017).

Article  Google Scholar 

Zhang, S. Y., Shi, W., Cheng, P. & Zaworotko, M. J. A mixed-crystal lanthanide zeolite-like metal–organic framework as a fluorescent indicator for lysophosphatidic acid, a cancer biomarker. J. Am. Chem. Soc. 137, 12203–12206 (2015).

Article  CAS  PubMed  Google Scholar 

Guo, Y. et al. Bilanthanide metal–organic frameworks for instant detection of 17β-estradiol, a vital physiological index. Small Struct. 3, 2100113 (2022).

Article  CAS  Google Scholar 

Zhou, J. et al. A bimetallic lanthanide metal–organic material as a self-calibrating color-gradient luminescent sensor. Adv. Mater. 27, 7072–7077 (2015).

Article  CAS  PubMed  Google Scholar 

Wanderley, M. M., Wang, C., Wu, C. D. & Lin, W. B. A chiral porous metal–organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 134, 9050–9053 (2012).

Article  CAS  PubMed  Google Scholar 

Han, Z. et al. Cation-induced chirality in a bifunctional metal–organic framework for quantitative enantioselective recognition. Nat. Commun. 10, 5117 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Han, Z. et al. Bifunctionalized metal–organic frameworks for pore-size-dependent enantioselective sensing. Angew. Chem. Int. Ed. Engl. 61, e202204066 (2022).

Article  CAS  PubMed  Google Scholar 

Han, Z. et al. A multicenter metal–organic framework for quantitative detection of multi-component organic mixtures. CCS Chem. 4, 3238–3245 (2022).

Article  CAS  Google Scholar 

Wei, W., Lu, R., Tang, S. & Liu, X. Highly cross-linked fluorescent poly (cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase. J. Mater. Chem. A 3, 4604–4611 (2015).

Article 

留言 (0)

沒有登入
gif