A flow cytometry-based protocol for syngenic isolation of neurovascular unit cells from mouse and human tissues

Liebner, S. et al. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 135, 311–336 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banks, W. A. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016).

Article  CAS  PubMed  Google Scholar 

Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

Article  CAS  PubMed  Google Scholar 

Janzer, R. C. & Raff, M. C. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325, 253–257 (1987).

Article  CAS  PubMed  Google Scholar 

Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte–endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

Article  CAS  PubMed  Google Scholar 

Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

Article  CAS  PubMed  Google Scholar 

da Fonseca, A. C. C. et al. The impact of microglial activation on blood–brain barrier in brain diseases. Front. Cell. Neurosci. 8, 362 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Archie, S. R., Shoyaib, Al,A. & Cucullo, L. Blood–brain barrier dysfunction in CNS disorders and putative therapeutic targets: an overview. Pharmaceutics 13, 1779 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phoenix, T. N. et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29, 508–522 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cucullo, L. et al. Development of a humanized in vitro blood–brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia 48, 505–516 (2007).

Article  CAS  PubMed  Google Scholar 

Lee, Y.-K., Uchida, H., Smith, H., Ito, A. & Sanchez, T. The isolation and molecular characterization of cerebral microvessels. Nat. Protoc. 14, 3059–3081 (2019).

Article  CAS  PubMed  Google Scholar 

Devraj, G. et al. HIF-1α is involved in blood–brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol. 140, 183–208 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guerit, S. et al. Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Prog. Neurobiol. 199, 101937 (2021).

Crouch, E. E. & Doetsch, F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat. Protoc. 13, 738–751 (2018).

Article  CAS  PubMed  Google Scholar 

Lyck, R. et al. Culture-induced changes in blood–brain barrier transcriptome: implications for amino-acid transporters in vivo. J. Cereb. Blood Flow. Metab. 29, 1491–1502 (2009).

Article  CAS  PubMed  Google Scholar 

Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

Daneman, R. et al. The mouse blood–brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS ONE 5, e13741 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, L. et al. Analysis of the brain mural cell transcriptome. Sci. Rep. 6, 35108 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022).

Batiuk, M. Y. et al. An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J. Biol. Chem. 292, 8874–8891 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kantzer, C. G. et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia 65, 990–1004 (2017).

Article  PubMed  Google Scholar 

Wylot, B., Konarzewska, K., Bugajski, L., Piwocka, K. & Zawadzka, M. Isolation of vascular endothelial cells from intact and injured murine brain cortex-technical issues and pitfalls in FACS analysis of the nervous tissue. Cytom. A 87, 908–920 (2015).

Article  CAS  Google Scholar 

Gurnik, S. et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 131, 753–773 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liebner, S. et al. Wnt/β-catenin signaling controls development of the blood–brain barrier. J. Cell Biol. 183, 409–417 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–E1746 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

Article  CAS  PubMed  Google Scholar 

Foo, L. C. Purification of rat and mouse astrocytes by immunopanning. Cold Spring Harb. Protoc. 2013, 421–432 (2013).

Article  PubMed  Google Scholar 

Spitzer, D. et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood–brain barrier in acute ischemic stroke. Acta Neuropathol. https://doi.org/10.1007/s00401-022-02452-1 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Srinivasan, K. et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat. Commun. 7, 11295 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sundstrøm, T. et al. Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model. Cancer Res. 73, 2445–2456 (2013).

Article  PubMed  Google Scholar 

Daphu, I. et al. In vitro treatment of melanoma brain metastasis by simultaneously targeting the MAPK and PI3K signaling pathways. Int. J. Mol. Sci. 15, 8773–8794 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Tacchio, M. et al. Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. Cancer Immunol. Res. 7, 1910–1927 (2019).

Article  PubMed  Google Scholar 

Richardson, G. M., Lannigan, J. & Macara, I. G. Does FACS perturb gene expression? Cytom. A 87, 166–175 (2015).

Article  Google Scholar 

Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jurga, A. M., Paleczna, M. & Kuter, K. Z. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell. Neurosci. 14, 198 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Haage, V. et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol. Commun. 7, 20 (2019).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif