Isocyanide-based multi-component reactions for carrier-free and carrier-bound covalent immobilization of enzymes

Bolivar, J. M., Woodley, J. M. & Fernandez-Lafuente, R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem. Soc. Rev. 51, 6251–6290 (2022).

Article  CAS  PubMed  Google Scholar 

Souza, P. M. P. et al. Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: functional and florescence studies. Int. J. Biol. Macromol. 191, 79–91 (2021).

Article  CAS  PubMed  Google Scholar 

Sheldon, R. A. & van Pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42, 6223–6235 (2013).

Article  CAS  PubMed  Google Scholar 

Rodrigues, R. C. et al. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol. Adv. 37, 746–770 (2019).

Article  CAS  PubMed  Google Scholar 

Guzik, U., Hupert-Kocurek, K. & Wojcieszyńska, D. Immobilization as a strategy for improving enzyme properties—application to oxidoreductases. Molecules 19, 8995–9018 (2014).

Article  PubMed  PubMed Central  Google Scholar 

da Fonseca, A. M. et al. Synthesis, biological activity, and in silico study of bioesters derived from bixin by the CALB enzyme. Biointerface Res. Appl. Chem. 12, 5901–5917 (2022).

Google Scholar 

Sheldon, R. A., Basso, A. & Brady, D. New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chem. Soc. Rev. 50, 5850–5862 (2021).

Article  CAS  PubMed  Google Scholar 

Cao, L. Carrier-Bound Immobilized Enzymes: Principles, Application and Design (John Wiley & Sons, 2006).

Monteiro, R. R. et al. Improvement of enzymatic activity and stability of lipase A from Candida antartica onto halloysite nanotubes with Taguchi method for optimized immobilization. Appl. Clay Sci. 228, 106634 (2022).

Article  CAS  Google Scholar 

Pierre, S. J. et al. Covalent enzyme immobilization onto photopolymerized highly porous monoliths. Adv. Mater. 18, 1822–1826 (2006).

Article  CAS  Google Scholar 

Silva, A. R. et al. The chemistry and applications of metal–organic frameworks (MOFs) as industrial enzyme immobilization systems. Molecules 27, 4529 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunes, Y. L. et al. Chemical and physical chitosan modification for designing enzymatic industrial biocatalysts: how to choose the best strategy? Int. J. Biol. Macromol. 181, 1124–1170 (2021).

Article  CAS  PubMed  Google Scholar 

Mohammadi, M. et al. Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC Adv. 5, 32698–32705 (2015).

Article  CAS  Google Scholar 

Mohammadi, M., Gandomkar, S., Habibi, Z. & Yousefi, M. One pot three-component reaction for covalent immobilization of enzymes: application of immobilized lipases for kinetic resolution of rac-ibuprofen. RSC Adv. 6, 52838–52849 (2016).

Article  CAS  Google Scholar 

Mohammadi, M., Ashjari, M., Garmroodi, M., Yousefi, M. & Karkhane, A. A. The use of isocyanide-based multicomponent reaction for covalent immobilization of Rhizomucor miehei lipase on multiwall carbon nanotubes and graphene nanosheets. RSC Adv. 6, 72275–72285 (2016).

Article  CAS  Google Scholar 

Zhu, J. & Bienaymé, H. Multicomponent Reactions (John Wiley & Sons, 2006).

Ashjari, M., Garmroodi, M., Ahrari, F., Yousefi, M. & Mohammadi, M. Soluble enzyme cross-linking via multi-component reactions: a new generation of cross-linked enzymes. Chem. Commun. 56, 9683–9686 (2020).

Article  CAS  Google Scholar 

Ahrari, F., Yousefi, M., Habibi, Z. & Mohammadi, M. Application of undecanedicarboxylic acid to prepare cross-linked enzymes (CLEs) of Rhizomucor miehei lipase (RML); selective enrichment of polyunsaturated fatty acids. Mol. Catal. 520, 112172 (2022).

Article  CAS  Google Scholar 

Chen, N. et al. Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Crit. Rev. Biotechnol. 1–15 (2022).

Jegan Roy, J. & Emilia Abraham, T. Strategies in making cross-linked enzyme crystals. Chem. Rev. 104, 3705–3722 (2004).

Article  CAS  PubMed  Google Scholar 

Noori, R., Perwez, M. & Sardar, M. Cross-linked enzyme aggregates: current developments and applications. Biocatalysis 83–112 (2019).

Jiaojiao, X., Yan, Y., Bin, Z. & Feng, L. Improved catalytic performance of carrier-free immobilized lipase by advanced cross-linked enzyme aggregates technology. Bioprocess Biosyst. Eng. 45, 147–158 (2022).

Article  CAS  PubMed  Google Scholar 

Mateo, C. et al. Immobilization of enzymes on heterofunctional epoxy supports. Nat. Protoc. 2, 1022–1033 (2007).

Article  CAS  PubMed  Google Scholar 

Moosavi, F., Ahrari, F., Ahmadian, G. & Mohammadi, M. Sortase-mediated immobilization of Candida antarctica lipase B (CalB) on graphene oxide; comparison with chemical approach. Biotechnol. Rep. 34, e00733 (2022).

Article  CAS  Google Scholar 

Fernandez-Lorente, G. et al. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Biomacromolecules 9, 2553–2561 (2008).

Article  CAS  PubMed  Google Scholar 

Zimmermann, J. L., Nicolaus, T., Neuert, G. & Blank, K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat. Protoc. 5, 975–985 (2010).

Article  CAS  PubMed  Google Scholar 

Amini, Y. et al. A multi-component reaction for covalent immobilization of lipases on amine-functionalized magnetic nanoparticles: production of biodiesel from waste cooking oil. Bioresour. Bioprocess. 9, 1–15 (2022).

Article  Google Scholar 

Gao, Z. et al. Co-immobilization of laccase and TEMPO onto amino-functionalized magnetic Fe3O4 nanoparticles and its application in acid fuchsin decolorization. Bioresour. Bioprocess. 5, 1–8 (2018).

Article  CAS  Google Scholar 

Vashist, S. K., Lam, E., Hrapovic, S., Male, K. B. & Luong, J. H. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem. Rev. 114, 11083–11130 (2014).

Article  CAS  PubMed  Google Scholar 

Moreira, Kd. S. et al. Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: characterization, kinetic resolution application, and docking studies. Chem. Eng. Res. Des. 177, 223–244 (2022).

Article  Google Scholar 

Kannan, K. & Jasra, R. V. Improved catalytic hydrolysis of carboxy methyl cellulose using cellulase immobilized on functionalized meso cellular foam. J. Porous Mater. 18, 409–416 (2011).

Article  CAS  Google Scholar 

Habibi, Z., Mohammadi, M. & Yousefi, M. Enzymatic hydrolysis of racemic ibuprofen esters using Rhizomucor miehei lipase immobilized on different supports. Process Biochem. 48, 669–676 (2013).

Article  CAS  Google Scholar 

Mohammadi, M., Habibi, Z., Gandomkar, S. & Yousefi, M. A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports; application for enantioselective resolution of rac-ibuprofen. Int. J. Biol. Macromol. 117, 523–531 (2018).

Article  CAS  PubMed  Google Scholar 

Barbosa, O. et al. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules 14, 2433–2462 (2013).

Article  CAS  PubMed  Google Scholar 

Shahedi, M., Yousefi, M., Habibi, Z., Mohammadi, M. & As’ habi, M. A. Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology. Renew. Energy 141, 847–857 (2019).

Article  CAS  Google Scholar 

Babaki, M., Yousefi, M., Habibi, Z., Brask, J. & Mohammadi, M. Preparation of highly reusable biocatalysts by immobilization of lipases on epoxy-functionalized silica for production of biodiesel from canola oil. Biochem. Eng. J. 101, 23–31 (2015).

Article  CAS  Google Scholar 

Ramon-Marquez, T., Medina-Castillo, A. L., Fernandez-Sanchez, J. F. & Fernández-Gutiérrez, A. Evaluation of different functional groups for covalent immobilization of enzymes in the development of biosensors with oxygen optical transduction. Anal. Methods 7, 2943–2949 (2015).

Article  CAS  Google Scholar 

Kutorglo, E. M. et al. Carboxyethyl-functionalized 3D porous polypyrrole synthesized using a porogen-free method for covalent immobilization of urease. Micropor. Mesopor. Mat. 311, 110690 (2021).

Article  CAS  Google Scholar 

Je, H. H. et al. Cellulose nanofibers for magnetically-separable and highly loaded enzyme immobilization. Chem. Eng. J. 323, 425–433 (2017).

Article  CAS  Google Scholar 

Orrego, A. H. et al. Stabilization of enzymes by multipoint covalent attachment on aldehyde-supports: 2-picoline borane as an alternative reducing agent. Catalysts 8, 333 (2018).

Article  Google Scholar 

Bolivar, J. M. et al. Stabilization of a formate dehydrogenase by covalent immobilization on highly activated glyoxyl-agarose supports. Biomacromolecules 7, 669–673 (2006).

Article  CAS  PubMed  Google Scholar 

Ashjari, M. et al. Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles; production of biodiesel from waste cooking oil. Process Biochem. 90, 156–167 (2020).

Article  CAS  Google Scholar 

Barbosa, O. et al. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4, 1583–1600 (2014).

Article  CAS 

留言 (0)

沒有登入
gif