A randomized, double-blind trial comparing the effect of two blood pressure targets on global brain metabolism after out-of-hospital cardiac arrest

Martinell L, Nielsen N, Herlitz J, et al. Early predictors of poor outcome after out-of-hospital cardiac arrest. Crit Care. 2017;21:96. https://doi.org/10.1186/s13054-017-1677-2.

Article  PubMed  PubMed Central  Google Scholar 

Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369:2197–206. https://doi.org/10.1056/NEJMoa1310519.

Article  CAS  PubMed  Google Scholar 

Grasner JT, Wnent J, Herlitz J, et al. Survival after out-of-hospital cardiac arrest in Europe—results of the EuReCa TWO study. Resuscitation. 2020;148:218–26. https://doi.org/10.1016/j.resuscitation.2019.12.042.

Article  PubMed  Google Scholar 

Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:90. https://doi.org/10.1186/s13054-017-1670-9.

Article  PubMed  PubMed Central  Google Scholar 

Sekhon MS, Gooderham P, Menon DK, et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest. Crit Care Med. 2019;47:960–9. https://doi.org/10.1097/CCM.0000000000003745.

Article  CAS  PubMed  Google Scholar 

Lemiale V, Dumas F, Mongardon N, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972–80. https://doi.org/10.1007/s00134-013-3043-4.

Article  PubMed  Google Scholar 

Sundgreen C, Larsen FS, Herzog TM, et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke J Cerebral Circ. 2001;32:128–32. https://doi.org/10.1161/01.str.32.1.128.

Article  CAS  Google Scholar 

Edgren E, Hedstrand U, Kelsey S, et al. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group Lancet. 1994;343:1055–9. https://doi.org/10.1016/s0140-6736(94)90179-1.

Article  CAS  Google Scholar 

Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med. 2021. https://doi.org/10.1007/s00134-021-06548-2.

Article  PubMed  PubMed Central  Google Scholar 

Perkins GD, Callaway CW, Haywood K, et al. Brain injury after cardiac arrest. Lancet. 2021;398:1269–78. https://doi.org/10.1016/S0140-6736(21)00953-3.

Article  PubMed  Google Scholar 

Jakobsen R, Halfeld Nielsen T, Granfeldt A, et al. A technique for continuous bedside monitoring of global cerebral energy state. Intensive Care Med Exp. 2016;4:3. https://doi.org/10.1186/s40635-016-0077-2.

Article  PubMed  PubMed Central  Google Scholar 

Jakobsen RP, Nielsen TH, Molstrom S, et al. Moderately prolonged permissive hypotension results in reversible metabolic perturbation evaluated by intracerebral microdialysis—an experimental animal study. Intensive Care Med Exp. 2019;7:67. https://doi.org/10.1186/s40635-019-0282-x.

Article  PubMed  PubMed Central  Google Scholar 

Molstrom S, Nielsen TH, Nordstrom CH, et al. Bedside microdialysis for detection of early brain injury after out-of-hospital cardiac arrest. Sci Rep. 2021;11:15871. https://doi.org/10.1038/s41598-021-95405-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Timofeev I, Carpenter KL, Nortje J, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain J Neurol. 2011;134:484–94. https://doi.org/10.1093/brain/awq353.

Article  Google Scholar 

Stein NR, McArthur DL, Etchepare M, et al. Early cerebral metabolic crisis after TBI influences outcome despite adequate hemodynamic resuscitation. Neurocrit Care. 2012;17:49–57. https://doi.org/10.1007/s12028-012-9708-y.

Article  PubMed  Google Scholar 

Reinstrup P, Stahl N, Mellergard P, et al. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47:701–9. https://doi.org/10.1097/00006123-200009000-00035. (discussion 709-710).

Article  CAS  PubMed  Google Scholar 

Hutchinson PJ, Jalloh I, Helmy A, et al. Consensus statement from the 2014 international microdialysis forum. Intensive Care Med. 2015;41:1517–28. https://doi.org/10.1007/s00134-015-3930-y.

Article  PubMed  PubMed Central  Google Scholar 

Ljunggren B, Schutz H, Siesjo BK. Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res. 1974;73:277–89. https://doi.org/10.1016/0006-8993(74)91049-x.

Article  CAS  PubMed  Google Scholar 

Nilsson B, Norber K, Nordstrom CH, et al. Rate of energy utilization in the cerebral cortex of rats. Acta Physiol Scand. 1975;93:569–71. https://doi.org/10.1111/j.1748-1716.1975.tb05852.x.

Article  CAS  PubMed  Google Scholar 

Nordstrom CH, Siesjo BK. Influence of phenobarbital on changes in the metabolites of the energy reserve of the cerebral cortex following complete ischemia. Acta Physiol Scand. 1978;104:271–80. https://doi.org/10.1111/j.1748-1716.1978.tb06279.x.

Article  CAS  PubMed  Google Scholar 

Norberg K, Siesjo BK. Cerebral metabolism in hypoxic hypoxia. I. Pattern of activation of glycolysis: a re-evaluation. Brain Res. 1975;86:31–44. https://doi.org/10.1016/0006-8993(75)90635-6.

Article  CAS  PubMed  Google Scholar 

Nielsen TH, Olsen NV, Toft P, et al. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets. Acta Anaesthesiol Scand. 2013;57:793–801. https://doi.org/10.1111/aas.12092.

Article  CAS  PubMed  Google Scholar 

Ameloot K, Genbrugge C, Meex I, et al. An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: time to drop “one-size-fits-all” hemodynamic targets? Resuscitation. 2015;90:121–6. https://doi.org/10.1016/j.resuscitation.2015.03.001.

Article  CAS  PubMed  Google Scholar 

Ameloot K, De Deyne C, Eertmans W, et al. Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the neuroprotect post-cardiac arrest trial. Eur Heart J. 2019;40:1804–14. https://doi.org/10.1093/eurheartj/ehz120.

Article  CAS  PubMed  Google Scholar 

Jakkula P, Pettila V, Skrifvars MB, et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44:2091–101. https://doi.org/10.1007/s00134-018-5446-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakkula P, Hastbacka J, Reinikainen M, et al. Near-infrared spectroscopy after out-of-hospital cardiac arrest. Crit Care. 2019;23:171. https://doi.org/10.1186/s13054-019-2428-3.

Article  PubMed  PubMed Central  Google Scholar 

van den Brule JM, Vinke E, van Loon LM, et al. Middle cerebral artery flow, the critical closing pressure, and the optimal mean arterial pressure in comatose cardiac arrest survivors-An observational study. Resuscitation. 2017;110:85–9. https://doi.org/10.1016/j.resuscitation.2016.10.022.

Article  PubMed  Google Scholar 

Beekman R, Maciel CB, Balu R, et al. Neuromonitoring After cardiac arrest: can twenty-first century medicine personalize post cardiac arrest care? Neurol Clin. 2021;39:273–92. https://doi.org/10.1016/j.ncl.2021.01.002.

Article  PubMed  Google Scholar 

Kjaergaard J, Schmidt H, Moller JE, et al. The “Blood pressure and oxygenation targets in post resuscitation care, a randomized clinical trial”: design and statistical analysis plan. Trials. 2022;23:177. https://doi.org/10.1186/s13063-022-06101-6.

Article  PubMed  PubMed Central  Google Scholar 

Kjaergaard J, Moller JE, Schmidt H, et al. Blood-pressure targets in comatose survivors of cardiac arrest. N Engl J Med. 2022. https://doi.org/10.1056/NEJMoa2208687.

Article  PubMed  Google Scholar 

Schmidt H, Kjaergaard J, Hassager C, et al. Oxygen targets in comatose survivors of cardiac arrest. N Engl J Med. 2022. https://doi.org/10.1056/NEJMoa2208686.

Article  PubMed  PubMed Central  Google Scholar 

Molstrom S, Nielsen TH, Nordstrom CH, et al. Design paper of the “Blood pressure targets in post-resuscitation care and bedside monitoring of cerebral energy state: a randomized clinical trial.” Trials. 2019;20:344. https://doi.org/10.1186/s13063-019-3397-1.

Article  PubMed  PubMed Central  Google Scholar 

Grand J, Meyer ASP, Hassager C, et al. Validation and clinical evaluation of a method for double-blinded blood pressure target investigation in intensive care medicine. Crit Care Med. 2018;46:1626–33. https://doi.org/10.1097/CCM.0000000000003289.

Article  PubMed  Google Scholar 

Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81. https://doi.org/10.1016/j.jbi.2008.08.010.

Article  PubMed  Google Scholar 

Molstrom S, Nielsen TH, Andersen C, et al. Bedside monitoring of cerebral energy state during cardiac surgery-a novel approach utilizing intravenous microdialysis. J Cardiothorac Vasc Anesth. 2017;31:1166–73. https://doi.org/10.1053/j.jvca.2016.11.001.

Article  PubMed  Google Scholar 

Forsse A, Nielsen TH, Molstrom S, et al. A prospective observational feasibility study of jugular bulb microdialysis in subarachnoid hemorrhage. Neurocrit Care. 2019. https://doi.org/10.1007/s12028-019-00888-0.

Article  Google Scholar 

Storm C, Leithner C, Krannich A, et al. Regional cerebral oxygen saturation after cardiac arrest in 60 patients–a prospective

留言 (0)

沒有登入
gif