Characteristic genetic spectrum of primary ciliary dyskinesia in Japanese patients and global ethnic heterogeneity: population-based genomic variation database analysis

Kennedy MP, Noone PG, Leigh MW, Zariwala MA, Minnix SL, Knowles MR, et al. High-resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol. 2007;188:1232–8.

Article  PubMed  Google Scholar 

Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 2006;43:326–33. https://doi.org/10.1136/jmg.2005.034868.

Article  CAS  PubMed  Google Scholar 

Olcese C, Patel MP, Shoemark A, Kiviluoto S, Legendre M, Williams HJ, et al. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun. 2017;8:14279.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hannah WB, DeBrosse S, Kinghorn B, Strausbaugh S, Aitken ML, Rosenfeld M, et al. The expanding phenotype of OFD1-related disorders: Hemizygous loss-of-function variants in three patients with primary ciliary dyskinesia. Mol Genet Genom Med. 2019;7:e911 https://doi.org/10.1002/mgg3.911.

Article  Google Scholar 

Wallmeier J, Frank D, Shoemark A, Nöthe-Menchen T, Cindric S, Olbrich H, et al. De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry. Am J Hum Genet. 2019;105:1030–9. https://doi.org/10.1016/j.ajhg.2019.09.022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol. 2021;110:19–33. https://doi.org/10.1016/j.semcdb.2020.11.007.

Article  CAS  PubMed  Google Scholar 

Zariwala MA, Leigh MW, Ceppa F, Kennedy MP, Noone PG, Carson JL, et al. Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am J Respir Crit Care Med. 2006;174:858–66. https://doi.org/10.1164/rccm.200603-370OC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mabrouk I, Al-Harthi N, Mani R, Montantin G, Tissier S, Lagha R, et al. Combining RSPH9 founder mutation screening and next-generation sequencing analysis is efficient for primary ciliary dyskinesia diagnosis in Saudi patients. J Hum Genet. 2022;67:381–6. https://doi.org/10.1038/s10038-021-01006-9.

Article  CAS  PubMed  Google Scholar 

Takeuchi K, Xu Y, Kitano M, Chiyonobu K, Abo M, Ikegami K, et al. Copy number variation in DRC1 is the major cause of primary ciliary dyskinesia in the Japanese population. Mol Genet Genom Med. 2020;8:e1137 https://doi.org/10.1002/mgg3.1137.

Article  CAS  Google Scholar 

Werner C, Lablans M, Ataian M, Raidt J, Wallmeier J, Große-Onnebrink J, et al. An international registry for primary ciliary dyskinesia. Eur Respir J. 2016;47:849–59.

Article  PubMed  Google Scholar 

Shoemark A, Boon M, Brochhausen C, Bukowy-Bieryllo Z, De Santi MM, Goggin P, et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur Respir J 2020;55:1900725.

Article  CAS  PubMed  Google Scholar 

Takeuchi K, Kitano M, Kiyotoshi H, Ikegami K, Ogawa S, Ikejiri M, et al. A targeted next-generation sequencing panel reveals novel mutations in Japanese patients with primary ciliary dyskinesia. Auris Nasus Larynx. 2018;45:585–91. https://doi.org/10.1016/j.anl.2017.09.007.

Article  PubMed  Google Scholar 

Kano G, Tsujii H, Takeuchi K, Nakatani K, Ikejiri M, Ogawa S, et al. Whole-exome sequencing identification of novel DNAH5 mutations in a young patient with primary ciliary dyskinesia. Mol Med Rep. 2016;14:5077–83. https://doi.org/10.3892/mmr.2016.5871.

Article  CAS  PubMed  PubMed Central  Google Scholar 

TogoVar [Internet]. Tokyo: Japan Science and Technology Agency (Japan), National Bioscience Database Center; 2018 - [cited 2022 Jun 04]. Available from: https://togovar.biosciencedbc.jp.

Gudmundsson S, Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, et al. Addendum: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2021;597:E3–E4. https://doi.org/10.1038/s41586-021-03758-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

Article  PubMed  PubMed Central  Google Scholar 

Zariwala MA, Knowles MR, Leigh MW Primary Ciliary Dyskinesia. 2007 Jan 24 [Updated 2019 Dec 5]. In: Adam MP, Mirzaa GM, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1122/.

Hannah WB, Seifert BA, Truty R, Zariwala MA, Ameel K, Zhao Y, et al. The global prevalence and ethnic heterogeneity of primary ciliary dyskinesia gene variants: a genetic database analysis. Lancet Respir Med. 2022;10:459–68. https://doi.org/10.1016/S2213-2600(21)00453-7.

Article  PubMed  Google Scholar 

Morimoto K, Hijikata M, Zariwala MA, Nykamp K, Inaba A, Guo TC, et al. Recurring large deletion in DRC1 (CCDC164) identified as causing primary ciliary dyskinesia in two Asian patients. Mol Genet Genom Med. 2019;7:e838 https://doi.org/10.1002/mgg3.838.

Article  CAS  Google Scholar 

Keicho N, Hijikata M, Morimoto K, Homma S, Taguchi Y, Azuma A, et al. Primary ciliary dyskinesia caused by a large homozygous deletion including exons 1-4 of DRC1 in Japanese patients with recurrent sinopulmonary infection. Mol Genet Genom Med. 2020;8:e1033 https://doi.org/10.1002/mgg3.1033.

Article  Google Scholar 

Fassad MR, Patel MP, Shoemark A, Cullup T, Hayward J, Dixon M, et al. Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort. J Med Genet. 2020;57:322–30. https://doi.org/10.1136/jmedgenet-2019-106501.

Article  CAS  PubMed  Google Scholar 

Kurokawa A, Kondo M, Honda N, Orimo M, Miyoshi A, Kobayashi F, et al. Analysis of the diagnosis of Japanese patients with primary ciliary dyskinesia using a conditional reprogramming culture. Respir Investig. 2022;60:407–17. https://doi.org/10.1016/j.resinv.2022.02.003.

Article  PubMed  Google Scholar 

Abo M, Takeuchi K, Ikejiri M, Ueno T, Yoneda T, Hara J, et al. Primary ciliary dyskinesia with CCDC39 variants displaying specific ciliary ultrastructure and movement concordant with the genotype: A case report. Respir Investig. 2022;60:725–8. https://doi.org/10.1016/j.resinv.2022.05.005.

Article  CAS  PubMed  Google Scholar 

Okamoto S, Mizumoto H, Asui L, Ikejiri M, Ogawa S, Takeuchi K, et al. A case of primary ciliary dyskinesia diagnosed at 3 months of age. Journal of Japan Society of Perinatal and Neonatal Medicine. 2022;58:346–52. https://doi.org/10.34456/jjspnm.58.2_346.

Feng G, Saso S, Sasano H, Xu Y, Takeuchi K. A novel homozygous mutation of GAS2L2 in two sisters with primary ciliary dyskinesia. Intern Med. 2022;61:2765–9. https://doi.org/10.2169/internalmedicine.8884-21.

Article  PubMed  PubMed Central  Google Scholar 

Xu Y, Ogawa S, Adachi Y, Sone N, Gotoh S, Ikejiri M, et al. A pediatric case of primary ciliary dyskinesia caused by novel copy number variation in PIH1D3. Auris Nasus Larynx. 2022;49:893–7. https://doi.org/10.1016/j.anl.2021.03.012.

Article  PubMed  Google Scholar 

Takeuchi K, Xu Y, Ogawa S, Ikejiri M, Nakatani K, Gotoh S, et al. A pediatric case of productive cough caused by novel variants in DNAH9. Hum Genome Var. 2021;8:3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif