Newly revealed variants of SERPINA3 in generalized pustular psoriasis attenuate inhibition of ACT on cathepsin G

Frey S, Sticht H, Wilsmann-Theis D, Gerschutz A, Wolf K, Lohr S, et al. Rare loss-of-function mutation in SERPINA3 in generalized pustular Psoriasis. J Investig Dermatol. 2020;140:1451–5.e13.

Article  CAS  PubMed  Google Scholar 

Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet 2007;370:263–71.

Article  CAS  PubMed  Google Scholar 

Navarini AA, Burden AD, Capon F, Mrowietz U, Puig L, Koks S, et al. European consensus statement on phenotypes of pustular psoriasis. J Eur Acad Dermatol Venereol. 2017;31:1792–9.

Article  CAS  PubMed  Google Scholar 

Akiyama M, Takeichi T, McGrath JA, Sugiura K. Autoinflammatory keratinization diseases. J Allergy Clin Immunol. 2017;140:1545–7.

Article  PubMed  Google Scholar 

Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei XY, Fraitag S, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl J Med. 2011;365:620–8.

Article  CAS  PubMed  Google Scholar 

Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V, et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 2011;89:432–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jordan CT, Cao L, Roberson ED, Pierson KC, Yang CF, Joyce CE, et al. PSORS2 is due to mutations in CARD14. Am J Hum Genet. 2012;90:784–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Setta-Kaffetzi N, Simpson MA, Navarini AA, Patel VM, Lu HC, Allen MH, et al. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking. Am J Hum Genet. 2014;94:790–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haskamp S, Bruns H, Hahn M, Hoffmann M, Gregor A, Lohr S, et al. Myeloperoxidase modulates inflammation in generalized pustular psoriasis and additional rare pustular skin diseases. Am J Hum Genet. 2020;107:527–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vergnano M, Mockenhaupt M, Benzian-Olsson N, Paulmann M, Grys K, Mahil SK, et al. Loss-of-function myeloperoxidase mutations are associated with increased neutrophil counts and pustular skin disease. Am J Hum Genet. 2021;108:757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akiyama M. Pustular psoriasis as an autoinflammatory keratinization disease (AiKD): Genetic predisposing factors and promising therapeutic targets. J Dermatol Sci. 2022;105:11–7.

Article  CAS  PubMed  Google Scholar 

Twelves S, Mostafa A, Dand N, Burri E, Farkas K, Wilson R, et al. Clinical and genetic differences between pustular psoriasis subtypes. J Allergy Clin Immunol. 2019;143:1021–6.

Article  PubMed  PubMed Central  Google Scholar 

Mossner R, Wilsmann-Theis D, Oji V, Gkogkolou P, Lohr S, Schulz P, et al. The genetic basis for most patients with pustular skin disease remains elusive. Br J Dermatol. 2018;178:740–8.

Article  CAS  PubMed  Google Scholar 

Kanazawa N, Nakamura T, Mikita N, Furukawa F. Novel IL36RN mutation in a Japanese case of early onset generalized pustular psoriasis. J Dermatol. 2013;40:749–51.

Article  PubMed  Google Scholar 

Zea-Vera AF, Estupinan-Lopez FE, Cifuentes-Burbano J, Vargas MJ, Bonelo A. Interleukin-36 Receptor Antagonist Deficiency (DITRA) with a Novel IL36RN homozygous mutation c.200G>T (P.Cys67Phe) in a Young Colombian Woman. J Clin Immunol. 2019;39:261–3.

Article  PubMed  Google Scholar 

Li H, Liao D, Meng S, Liu J, Li S, Ni S, et al. Novel IL36RN mutation identified in pediatric-onset generalized pustular psoriasis causes IL36 antagonist degradation. J Clin Immunol. 2021;41:701–4.

Article  CAS  PubMed  Google Scholar 

Horvath AJ, Irving JA, Rossjohn J, Law RH, Bottomley SP, Quinsey NS, et al. The murine orthologue of human antichymotrypsin: a structural paradigm for clade A3 serpins. J Biol Chem. 2005;280:43168–78.

Article  CAS  PubMed  Google Scholar 

Baker C, Belbin O, Kalsheker N, Morgan K. SERPINA3 (aka alpha-1-antichymotrypsin). Front Biosci: J Virtual Libr. 2007;12:2821–35.

Article  CAS  Google Scholar 

Gettins PG. Serpin structure, mechanism, and function. Chem Rev. 2002;102:4751–804.

Article  CAS  PubMed  Google Scholar 

Haile Y, Carmine-Simmen K, Olechowski C, Kerr B, Bleackley RC, Giuliani F. Granzyme B-inhibitor serpina3n induces neuroprotection in vitro and in vivo. J Neuroinflammation. 2015;12:157.

Article  PubMed  PubMed Central  Google Scholar 

Vicuna L, Strochlic DE, Latremoliere A, Bali KK, Simonetti M, Husainie D, et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase. Nat Med. 2015;21:518–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henry CM, Sullivan GP, Clancy DM, Afonina IS, Kulms D, Martin SJ. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 2016;14:708–22.

Article  CAS  PubMed  Google Scholar 

Boehner A, Navarini AA, Eyerich K. Generalized pustular psoriasis - a model disease for specific targeted immunotherapy, systematic review. Exp Dermatol. 2018;27:1067–77.

Article  PubMed  Google Scholar 

Li J, Shi L, Zhang K, Zhang Y, Hu S, Zhao T, et al. VarCards: an integrated genetic and clinical database for coding variants in the human genome. Nucleic Acids Res. 2018;46:D1039–D48.

Article  CAS  PubMed  Google Scholar 

Lindmark B, Lilja H, Alm R, Eriksson S. The microheterogeneity of desialylated alpha 1-antichymotrypsin: the occurrence of two amino-terminal isoforms, one lacking a His-Pro dipeptide. Biochim et Biophys acta. 1989;997:90–5.

Article  CAS  Google Scholar 

Sanchez-Navarro A, Gonzalez-Soria I, Caldino-Bohn R, Bobadilla NA. An integrative view of serpins in health and disease: the contribution of SerpinA3. Am J Physiol Cell Physiol. 2021;320:C106–C18.

PubMed  Google Scholar 

Mahil SK, Twelves S, Farkas K, Setta-Kaffetzi N, Burden AD, Gach JE, et al. AP1S3 mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating IL-36 production. J Investig Dermatol. 2016;136:2251–9.

Article  CAS  PubMed  Google Scholar 

Farooq M, Nakai H, Fujimoto A, Fujikawa H, Matsuyama A, Kariya N, et al. Mutation analysis of the IL36RN gene in 14 Japanese patients with generalized pustular psoriasis. Hum Mutat. 2013;34:176–83.

Article  CAS  PubMed  Google Scholar 

Li M, Han J, Lu Z, Li H, Zhu K, Cheng R, et al. Prevalent and rare mutations in IL-36RN gene in Chinese patients with generalized pustular psoriasis and Psoriasis vulgaris. The. J Investig Dermatol. 2013;133:2637–9.

Article  CAS  PubMed  Google Scholar 

Zhou J, Luo Q, Cheng Y, Wen X, Liu J. An update on genetic basis of generalized pustular psoriasis (Review). Int J Mol Med. 2021;47:118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Israel L, Mellett M. Clinical and genetic heterogeneity of CARD14 mutations in psoriatic skin disease. Front Immunol. 2018;9:2239.

Article  PubMed  PubMed Central  Google Scholar 

Ueda Y, Komine M, Kamiya K, Tsuda H, Maekawa T, Murata S, et al. Generalized pustular psoriasis in a 92-year-old man with a homozygous nonsense mutation in IL36RN. J Dermatol. 2018;45:326–8.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif