In vitro and in vivo synergistic wound healing and anti-methicillin-resistant Staphylococcus aureus (MRSA) evaluation of liquorice-decorated silver nanoparticles

Mohammed HA, et al. Bio-evaluation of the wound healing activity of Artemisia judaica L. as part of the plant’s use in traditional medicine; Phytochemical, antioxidant, anti-inflammatory, and antibiofilm properties of the plant’s essential oils. Antioxidants. 2022;11:332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Longaker MT, et al. Adult skin wounds in the fetal environment heal with scar formation. Ann Surg. 1994;219:65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuhin RH, et al. Wound healing effect of Euphorbia hirta linn.(Euphorbiaceae) in alloxan induced diabetic rats. BMC Complement Altern Med. 2017;17:1–14.

Article  Google Scholar 

Alminderej F, et al. Antimicrobial and wound healing potential of a new chemotype from Piper cubeba L. essential oil and in silico study on S. aureus tyrosyl-tRNA synthetase protein. Plants. 2021;10:205.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohammed HA, Mohammed SAA, Khan O, Ali HM. Topical eucalyptol ointment accelerates wound healing and exerts antioxidant and anti-inflammatory effects in rats’ skin burn model. J Oleo Sci. 2022;71:1777–88.

Article  CAS  PubMed  Google Scholar 

Qureshi KA, et al. Cinnamaldehyde-based self-nanoemulsion (CA-SNEDDS) accelerates wound healing and exerts antimicrobial, antioxidant, and anti-inflammatory effects in rats’ skin burn model. Molecules. 2022;27:5225.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song K, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro–in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf B Biointerfaces. 2020;194:111157.

Article  CAS  PubMed  Google Scholar 

Mamedov NA, Egamberdieva D. Phytochemical constituents and pharmacological effects of licorice: a review. Plant Hum Heal. 2019;3:1–21.

Google Scholar 

Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBPP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phyther Res. 2018;32:2323–39.

Article  CAS  Google Scholar 

Assar DH, et al. Wound healing potential of licorice extract in rat model: Antioxidants, histopathological, immunohistochemical and gene expression evidences. Biomed Pharmacother. 2021;143:112151.

Article  CAS  PubMed  Google Scholar 

Tanideh N, et al. The healing effect of licorice on Pseudomonas aeruginosa infected burn wounds in experimental rat model. World J Plast Surg. 2014;3:99.

PubMed  PubMed Central  Google Scholar 

Sidhu P, et al. Therapeutic benefits of liquorice in dentistry. J Ayurveda Integr Med. 2020;11:82–88.

Article  PubMed  Google Scholar 

Ibraheem DR, et al. Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials. 2022;12:2808.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdul-Jabbar AM, et al. Combined anti-bacterial actions of lincomycin and freshly prepared silver nanoparticles: overcoming the resistance to antibiotics and enhancement of the bioactivity. Antibiotics. 2022;11:1791.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khane Y, et al. Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials. 2022;12:2013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saddik MS, et al. Biosynthesis, characterization, and wound-healing activity of phenytoin-loaded copper nanoparticles. AAPS PharmSciTech. 2020;21:1–12.

Article  Google Scholar 

Xu L, et al. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10:8996.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mori Y, et al. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett. 2013;8:1–6.

Article  Google Scholar 

Keleştemur S, et al. Wound healing properties of modified silver nanoparticles and their distribution in mouse organs after topical application. Nano Biomed Eng. 2012;4:170.

Article  Google Scholar 

Maksoud HAA, et al. Ameliorative effect of liquorice extract versus silymarin in experimentally induced chronic hepatitis: A biochemical and genetical study. Clin Nutr Exp. 2019;23:69–79.

Article  Google Scholar 

Erdogan O, et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One. 2019;14:e0216496.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee AS, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Prim. 2018;4:1–23.

Google Scholar 

El-Feky GS, Zayed GM. PLGA nanoparticles loaded mucoadhesive and thermosensitive hydrogel as a potential platform for the treatment of oral mucositis. Int J Appl Pharm. 2019;11:106–12.

Article  CAS  Google Scholar 

Sreelakshmy V, Deepa MK, Mridula P. Green synthesis of silver nanoparticles from Glycyrrhiza glabra root extract for the treatment of gastric ulcer. J Dev Drugs. 2016;5:2.

Google Scholar 

Albukhaty S, et al. Investigation of dextran-coated superparamagnetic nanoparticles for targeted vinblastine controlled release, delivery, apoptosis induction, and gene expression in pancreatic cancer cells. Molecules. 2020;25:4721.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al Rugaie O, et al. Modification of SWCNTs with hybrid materials ZnO–Ag and ZnO–Au for enhancing bactericidal activity of phagocytic cells against Escherichia coli through NOX2 pathway. Sci Rep. 2022;12:1–12.

Article  Google Scholar 

Qais FA, et al. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg Chem Appl. 2019;2019:1–12.

Article  Google Scholar 

Diniz FR, et al. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials. 2020;10:390.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mekkawy AI, et al. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomed. 2017;12:759.

Article  CAS  Google Scholar 

Abdel-Maguid EM, et al. Efficacy of stem cell-conditioned medium vs. platelet-rich plasma as an adjuvant to ablative fractional CO2 laser resurfacing for atrophic post-acne scars: a split-face clinical trial. J Dermatol Treat. 2021;32:242–9.

Article  CAS  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.

Article  CAS  PubMed  Google Scholar 

Kumar B, Vijayakumar M, Govindarajan R, Pushpangadan P. Ethnopharmacological approaches to wound healing—exploring medicinal plants of India. J Ethnopharmacol. 2007;114:103–13.

Article  CAS  PubMed  Google Scholar 

Jang MH, Piao XL, Kim JM, Kwon SW, Park JH. Inhibition of cholinesterase and amyloid-&bgr; aggregation by resveratrol oligomers from Vitis amurensis. Phyther Res [Internet]. 2008;22:544–9.

Article  CAS  Google Scholar 

Carswell EA, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 1975;72:3666–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sokol CL, Barton GM, Farr AG, Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2008;9:310–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chornenka NM, et al. Correction parameters of endogenous intoxication in experimental burn disease at the stage of toxemia. Res J Pharm Biol Chem Sci. 2016;7:1042–7.

Google Scholar 

Raetska Y, et al. Cytokine profile indicators in rat blood serum in a model of esophagus burn induced by antioxidant chemical preparation. Biomed Res Ther. 2017;4:1591–606.

Article  Google Scholar 

Rodríguez-Luis O, et al. Green synthesis of silver nanoparticles and their bactericidal and antimycotic activities against oral microbes. J Nanomater. 2016;2016:1–10.

Article  Google Scholar 

Gupta Y, Sharma V, Kumar BVM. Issues in determining size of nano-crystalline ceramic particles by X-ray diffraction. Mater Today Proc. 2015;2:3534–8.

Article  Google Scholar 

Durán N, et al. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol, Biol Med. 2016;12:789–99.

Article  Google Scholar 

Vazquez-Muñoz R, et al. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One. 2019;14:e0224904.

Article  PubMed  PubMed Central  Google Scholar 

Li Q, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42:4591–602.

Article 

留言 (0)

沒有登入
gif