Thyroid hormone receptor knockout prevents the loss of Xenopus tail regeneration capacity at metamorphic climax

Lehoczky JA, Robert B, Tabin CJ. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc Natl Acad Sci USA. 2011;108(51):20609–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature. 2011;476(7361):409–13.

Article  CAS  PubMed  Google Scholar 

Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60.

Article  CAS  PubMed  Google Scholar 

Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286–300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gemberling M, Bailey TJ, Hyde DR, Poss KD. The zebrafish as a model for complex tissue regeneration. Trends Genet. 2013;29(11):611–20.

Article  CAS  PubMed  Google Scholar 

Wei X, Fu S, Li H, Liu Y, Wang S, Feng W, Yang Y, Liu X, Zeng YY, Cheng M, et al. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science. 2022;377(6610):eabp9444.

Article  CAS  PubMed  Google Scholar 

Joven A, Elewa A, Simon A. Model systems for regeneration: salamanders. Development. 2019;146(14):dev167700.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YY, Love NR, Amaya E. Tadpole tail regeneration in Xenopus. Biochem Soc T. 2014;42:617–23.

Article  CAS  Google Scholar 

Phipps LS, Marshall L, Dorey K, Amaya E. Model systems for regeneration: Xenopus. Development. 2020. https://doi.org/10.1242/dev.180844.

Article  PubMed  Google Scholar 

Poss KD, Keating MT, Nechiporuk A. Tales of regeneration in zebrafish. Dev Dyn. 2003;226(2):202–10.

Article  PubMed  Google Scholar 

Whitehead GG, Makino S, Lien C-L, Keating MT. fgf20 is essential for initiating zebrafish fin regeneration. Science. 2005;310(5756):1957–60.

Article  CAS  PubMed  Google Scholar 

Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ. Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol. 2005;279(1):86–98.

Article  CAS  PubMed  Google Scholar 

Bölük A, Yavuz M, Demircan T. Axolotl: a resourceful vertebrate model for regeneration and beyond. Dev Dynam. 2022. https://doi.org/10.1002/dvdy.520.

Article  Google Scholar 

Schlegel A, Lesurtel M, Melloul E, Limani P, Tschuor C, Graf R, Humar B, Clavien PA. ALPPS: from human to mice highlighting accelerated and novel mechanisms of liver regeneration. Ann Surg. 2014;260(5):839–47.

Article  PubMed  Google Scholar 

Cheng Y, Yin Y, Zhang A, Bernstein AM, Kawaguchi R, Gao K, Potter K, Gilbert H-Y, Ao Y, Ou J. Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice. Nat Commun. 2022;13(1):1–22.

Google Scholar 

Marshall LN, Vivien CJ, Girardot F, Pericard L, Scerbo P, Palmier K, Demeneix BA, Coen L. Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. P Natl Acad Sci USA. 2019;116(9):3614–23.

Article  CAS  Google Scholar 

Barker DM, Beck CW. Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dynam. 2009;238(6):1366–78.

Article  CAS  Google Scholar 

Suzuki M, Yakushiji N, Nakada Y, Satoh A, Ide H, Tamura K. Limb regeneration in Xenopus laevis froglet. ScientificWorldJournal. 2006;6:26–37.

Article  PubMed  PubMed Central  Google Scholar 

Keenan SR, Beck CW. Xenopus limb bud morphogenesis. Dev Dynam. 2016;245(3):233–43.

Article  Google Scholar 

Shi Y-B. Unliganded thyroid hormone receptor regulates metamorphic timing via the recruitment of histone deacetylase complexes. Curr Top Dev Biol. 2013;105:275–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Y-B. Life without thyroid hormone receptor. Endocrinology. 2021;162(4):bqab028.

Article  PubMed  PubMed Central  Google Scholar 

Buchholz DR. More similar than you think: frog metamorphosis as a model of human perinatal endocrinology. Dev Biol. 2015;408(2):188–95.

Article  CAS  PubMed  Google Scholar 

Mochii M, Taniguchi Y, Shikata I. Tail regeneration in the Xenopus tadpole. Dev Growth Differ. 2007;49(2):155–61.

Article  PubMed  Google Scholar 

Love NR, Chen YY, Bonev B, Gilchrist MJ, Fairclough L, Lea R, Mohun TJ, Paredes R, Zeef LAH, Amaya E. Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. BMC Dev Biol. 2011. https://doi.org/10.1186/1471-213X-11-70.

Article  PubMed  PubMed Central  Google Scholar 

Aztekin C, Hiscock TW, Marioni JC, Gurdon JB, Simons BD, Jullien J. Identification of a regeneration-organizing cell in the Xenopus tail. Science. 2019;364(6441):653–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tseng AS, Levin M. Tail regeneration in Xenopus laevis as a model for understanding tissue repair. J Dent Res. 2008;87(9):806–16.

Article  CAS  PubMed  Google Scholar 

Wang S, Shi Y-B. Evolutionary divergence in tail regeneration between Xenopus laevis and Xenopus tropicalis. Cell Biosci. 2021;11(1):1–4.

Google Scholar 

Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol. 2013;15(2):222–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tseng AS, Adams DS, Qiu DY, Koustublian P, Levin M. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol. 2007;301(1):62–9.

Article  CAS  PubMed  Google Scholar 

Aztekin C, Hiscock TW, Butler R, De Jesús Andino F, Robert J, Gurdon JB, Jullien J. The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation. Development. 2020;147(3):dev185496.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams MC, Patel JH, Kakebeen AD, Wills AE. Nutrient availability contributes to a graded refractory period for regeneration in Xenopus tropicalis. Dev Biol. 2021;473:59–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z, Li W, Geng L, Sun L, Wang Q, Yu Y, Yan P, Liang C, Ren J, Song M. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell discovery. 2022;8(1):1–22.

Article  Google Scholar 

Shibata Y, Wen L, Okada M, Shi YB. Organ-specific requirements for thyroid hormone receptor ensure temporal coordination of tissue-specific transformations and completion of Xenopus metamorphosis. Thyroid. 2020;30(2):300–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakajima K, Tazawa I, Yaoita Y. Thyroid hormone receptor alpha- and beta-knockout Xenopus tropicalis tadpoles reveal subtype-specific roles during development. Endocrinology. 2018;159(2):733–43.

Article  CAS  PubMed  Google Scholar 

Wang S, Liu L, Liu J, Zhu W, Tanizaki Y, Fu L, Bao L, Shi YB, Jiang J. Gene expression program underlying tail resorption during thyroid hormone-dependent metamorphosis of the ornamented pygmy frog Microhyla fissipes. Front Endocrinol. 2019;10:11.

Article  Google Scholar 

Okada M, Shi Y-B. Cell Proliferation analysis during Xenopus metamorphosis: using 5-ethynyl-2-deoxyuridine (EdU) to stain proliferating intestinal cells. Cold Spring Harb Protoc. 2017;2017(9):pdb.prot097717.

Article  PubMed  PubMed Central  Google Scholar 

Beck CW, Izpisua Belmonte JC, Christen B. Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn. 2009;238(6):1226–48.

Article  CAS  PubMed  Google Scholar 

Gaete M, Munoz R, Sanchez N, Tampe R, Moreno M, Contreras EG, Lee-Liu D, Larrain J. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells. Neural Dev. 2012. https://doi.org/10.1186/1749-8104-7-13.

Article  PubMed  PubMed Central  Google Scholar 

Munoz R, Edwards-Faret G, Moreno M, Zuniga N, Cline H, Larrain J. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells. Dev Biol. 2015;408(2):229–43.

留言 (0)

沒有登入
gif