Cell–extracellular matrix mechanotransduction in 3D

Levental, I., Georges, P. C. & Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).

Article  CAS  PubMed  Google Scholar 

Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

Article  CAS  PubMed  Google Scholar 

Discher Dennis, E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

Article  CAS  PubMed  Google Scholar 

Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

Article  CAS  PubMed  Google Scholar 

Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

DuFort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12, 308–319 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

Article  CAS  PubMed  Google Scholar 

Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001). This articles demonstrates the key differences in the structure and composition of cell–ECM adhesions for fibroblasts between 2D culture, 3D culture and tissues.

Article  CAS  PubMed  Google Scholar 

Baker, B. M. & Chen, C. S. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Von Der Mark, K., Gauss, V., Von Der Mark, H. & MÜLler, P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267, 531–532 (1977).

Article  PubMed  Google Scholar 

Petersen, O. W., Rønnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerecht, S. et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 11298–11303 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischbach, C. et al. Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc. Natl Acad. Sci. USA 106, 399–404 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fratzl, P. in Collagen: Structure and Mechanics (ed. Fratzl, P.) 1–13 (Springer, 2008).

Jokinen, J. et al. Integrin-mediated cell adhesion to type I collagen fibrils. J. Biol. Chem. 279, 31956–31963 (2004).

Article  CAS  PubMed  Google Scholar 

Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

Article  CAS  PubMed  Google Scholar 

Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011).

Article  CAS  PubMed  Google Scholar 

Vader, D., Kabla, A., Weitz, D. & Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE 4, e5902 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Proestaki, M., Ogren, A., Burkel, B. & Notbohm, J. Modulus of fibrous collagen at the length scale of a cell. Exp. Mech. 59, 1323–1334 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hotary, K., Allen, E., Punturieri, A., Yana, I. & Weiss, S. J. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J. Cell Biol. 149, 1309–1323 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Münster, S. et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl Acad. Sci. USA 110, 12197–12202 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Nam, S., Hu, K. H., Butte, M. J. & Chaudhuri, O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl Acad. Sci. USA 113, 5492–5497 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ban, E. et al. Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophys. J. 114, 450–461 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collet, J.-P., Shuman, H., Ledger, R. E., Lee, S. & Weisel, J. W. The elasticity of an individual fibrin fiber in a clot. Proc. Natl Acad. Sci. USA 102, 9133–9137 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, A. E. X., Litvinov, R. I., Discher, D. E., Purohit, P. K. & Weisel, J. W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325, 741–744 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yurchenco, P. D. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3, a004911 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Chang, J. & Chaudhuri, O. Beyond proteases: basement membrane mechanics and cancer invasion. J. Cell Biol. 218, 2456–2469 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Li, H., Zheng, Y., Han, Y. L., Cai, S. & Guo, M. Nonlinear elasticity of biological basement membrane revealed by rapid inflation and deflation. Proc. Natl Acad. Sci. USA 118, e2022422118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stowers, R. S. et al. Extracellular matrix stiffening induces a malignant phenotypic transition in breast epithelial cells. Cell. Mol. Bioeng. 10, 114–123 (2017).

Article  CAS  PubMed  Google Scholar 

Reuten, R. et al. Basement membrane stiffness determines metastases formation. Nat. Mater. 20, 892–903 (2021).

Article  CAS  PubMed  Google Scholar 

Kleinman, H. K. & Martin, G. R. Matrigel: Basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378–386 (2005).

Article  CAS  PubMed  Google Scholar 

Chopra, A. et al. Augmentation of integrin-mediated mechanotransduction by hyaluronic acid. Biomaterials 35, 71–82 (2014).

Article  CAS  PubMed  Google Scholar 

Wolf, K. J. et al. A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. Proc. Natl Acad. Sci. USA 117, 11432–11443 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolf, K. J. & Kumar, S. Hyaluronic acid: incorporating the bio into the material. ACS Biomater. Sci. Eng. 5, 3753–3765 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burdick, J. A. & Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41–H56 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006).

Article 

留言 (0)

沒有登入
gif