T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control

Steele, M. M. & Lund, A. W. Afferent lymphatic transport and peripheral tissue. J. Immunol. 206, 264–272 (2021).

Article  CAS  PubMed  Google Scholar 

Lund, A. W. et al. Lymphatic vessels regulate immune microenvironments in human and mouse melanoma. J. Clin. Invest. 126, 3389–3402 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Loo, C. P. et al. Lymphatic vessels balance viral dissemination and immune activation following cutaneous viral infection. Cell Rep. 20, 3176–3187 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alitalo, A. K. et al. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis. Cancer Res. 73, 4212–4221 (2013).

Article  CAS  PubMed  Google Scholar 

Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1, 191–199 (2012).

Article  CAS  PubMed  Google Scholar 

Gkountidi, A. O. et al. MHC class II antigen presentation by lymphatic endothelial cells in tumors promotes intratumoral regulatory T cell-suppressive functions. Cancer Immunol. Res. 9, 748–764 (2021).

Article  CAS  PubMed  Google Scholar 

Garnier, L. et al. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. Sci. Adv. 8, eabl5162 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lane, R. S. et al. IFNγ-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J. Exp. Med. 215, 3057–3074 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

Article  CAS  PubMed  Google Scholar 

Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

Article  CAS  PubMed  Google Scholar 

Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 213, 951–966 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mackay, C. R., Kimpton, W. G., Brandon, M. R. & Cahill, R. N. Lymphocyte subsets show marked differences in their distribution between blood and the afferent and efferent lymph of peripheral lymph nodes. J. Exp. Med. 167, 1755–1765 (1988).

Article  CAS  PubMed  Google Scholar 

Olszewski, W. L., Grzelak, I., Ziolkowska, A. & Engeset, A. Immune cell traffic from blood through the normal human skin to lymphatics. Clin. Dermatol. 13, 473–483 (1995).

Article  CAS  PubMed  Google Scholar 

Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein ‘Kaede’ transgenic mice. Proc. Natl Acad. Sci. USA 105, 10871–10876 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steele, M. et al. Quantifying leukocyte egress from mouse skin and tumors. J. Vis. Exp. 143, 58704 (2019).

Google Scholar 

Torcellan, T. et al. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc. Natl Acad. Sci. 114, 5677–5682 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Z. et al. In vivo labeling reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid tissue. J. Exp. Med. 219, e20210749 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, M. N. et al. Chemoattractant receptors and lymphocyte egress from extralymphoid tissue: changing requirements during the course of inflammation. J. Immunol. 185, 4873–4882 (2010).

Article  CAS  PubMed  Google Scholar 

Mäkinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7, 199–205 (2001).

Article  PubMed  Google Scholar 

Bengsch, B. et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity 48, 1029–1045 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

Article  CAS  PubMed  Google Scholar 

Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

Article  CAS  PubMed  Google Scholar 

Schneider, O. D., Weiss, A. A. & Miller, W. E. Pertussis toxin signals through the TCR to initiate cross-desensitization of the chemokine receptor CXCR4. J. Immunol. 182, 5730–5739 (2009).

Article  CAS  PubMed  Google Scholar 

Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897 (2010).

Article  CAS  PubMed  Google Scholar 

Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kabashima, K. et al. CXCL12–CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171, 1249–1257 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt, T. H., Bannard, O., Gray, E. E. & Cyster, J. G. CXCR4 promotes B cell egress from Peyer’s patches. J. Exp. Med. 210, 1099–1107 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Wein, A. N. et al. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J. Exp. Med. 216, 2748–2762 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

Article  CAS  PubMed  Google Scholar 

Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berkley, A. M. & Fink, P. J. Cutting edge: CD8+ recent thymic emigrants exhibit increased responses to low-affinity ligands and improved access to peripheral sites of inflammation. J. Immunol. 193, 3262–3266 (2014).

Article  CAS  PubMed  Google Scholar 

Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaiswal, A. et al. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell 40, 524–544 (2022).

Article  CAS  PubMed  Google Scholar 

Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif