Wnt pathway inhibitors are upregulated in XLH dental pulp cells in response to odontogenic differentiation

Beck-Nielsen, S. S., Brock-Jacobsen, B., Gram, J., Brixen, K. & Jensen, T. K. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur. J. Endocrinol. 160, 491–497 (2009).

Article  PubMed  Google Scholar 

Endo, I. et al. Nationwide survey of fibroblast growth factor 23 (FGF23)-related hypophosphatemic diseases in Japan: prevalence, biochemical data and treatment. Endocr. J. 62, 811–816 (2015).

Article  PubMed  Google Scholar 

Rafaelsen, S., Johansson, S., Ræder, H. & Bjerknes, R. Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur. J. Endocrinol. 174, 125–136 (2016).

Article  PubMed  Google Scholar 

Foster, B. L. et al. Rare bone diseases and their dental, oral, and craniofacial manifestations. J. Dent. Res. 93, 7S–19S (2014).

Article  PubMed  PubMed Central  Google Scholar 

Foster, B. L., Nociti, F. H. & Somerman, M. J. The rachitic tooth. Endocr. Rev. 35, 1–34 (2014).

Article  PubMed  Google Scholar 

Hanisch, M., Bohner, L., Sabandal, M. M. I., Kleinheinz, J. & Jung, S. Oral symptoms and oral health-related quality of life of individuals with x-linked hypophosphatemia. Head. Face Med. 15, 8 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Salmon, B. et al. Abnormal osteopontin and matrix extracellular phosphoglycoprotein localization, and odontoblast differentiation, in X-linked hypophosphatemic teeth. Connect. Tissue Res. 55, 79–82 (2014).

Article  PubMed  Google Scholar 

Baroncelli, G. I. et al. Prevalence and pathogenesis of dental and periodontal lesions in children with X-linked hypophosphatemic rickets. Eur. J. Paediatr. Dent. 7, 61–66 (2006).

PubMed  Google Scholar 

Baroncelli, G. I. et al. Pulp chamber features, prevalence of abscesses, disease severity, and PHEX mutation in X-linked hypophosphatemic rickets. J. Bone Miner. Metab. 39, 212–223 (2021).

Article  PubMed  Google Scholar 

Lo, S. H., Lachmann, R., Williams, A., Piglowska, N. & Lloyd, A. J. Exploring the burden of X-linked hypophosphatemia: a European multi-country qualitative study. Qual. Life Res. 29, 1883–1893 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Salmon, B. et al. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia. PLoS ONE 8, e56749 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Coyac, B. R. et al. Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone 103, 334–346 (2017).

Article  PubMed  Google Scholar 

Hoshino, M. et al. Claudin rather than occludin is essential for differentiation in rat incisor odontoblasts. Oral. Dis. 14, 606–612 (2008).

Article  PubMed  Google Scholar 

Järvinen, E., Shimomura-Kuroki, J., Balic, A., Jussila, M. & Thesleff, I. Mesenchymal Wnt/β-catenin signaling limits tooth number. Development 145, dev158048 (2018).

Zhao, Y., Yuan, X., Bellido, T. & Helms, J. A. A correlation between Wnt/Beta-catenin signaling and the rate of dentin secretion. J. Endod. 45, 1357–1364.e1 (2019).

Article  PubMed  Google Scholar 

Zhu, X. et al. Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis *. J. Biol. Chem. 288, 12080–12089 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Kim, T.-H. et al. Constitutive stabilization of ß-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem. Biophys. Res. Commun. 412, 549–555 (2011).

Article  PubMed  Google Scholar 

Zhao, Y., Yuan, X., Liu, B., Tulu, U. S. & Helms, J. A. Wnt-responsive odontoblasts secrete new dentin after superficial tooth injury. J. Dent. Res. 97, 1047–1054 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Palacios, J. et al. Differential spatiotemporal expression of E- and P-cadherin during mouse tooth development. Int. J. Dev. Biol. 39, 663–666 (1995).

PubMed  Google Scholar 

Hermans, F., Hemeryck, L., Lambrichts, I., Bronckaers, A. & Vankelecom, H. Intertwined signaling pathways governing tooth development: a give-and-take between canonical Wnt and Shh. Front. Cell Dev. Biol. 9, 758203 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kornsuthisopon, C., Photichailert, S., Nowwarote, N., Tompkins, K. A. & Osathanon, T. Wnt signaling in dental pulp homeostasis and dentin regeneration. Arch. Oral. Biol. 134, 105322 (2022).

Article  PubMed  Google Scholar 

Martin, A. et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 25, 2551–2562 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Lu, Y. et al. The biological function of DMP-1 in osteocyte maturation is mediated by Its 57-kDa C-terminal fragment. J. Bone Miner. Res. 26, 331–340 (2011).

Article  PubMed  Google Scholar 

Simsek Kiper, P. O. et al. Cortical-bone fragility—insights from sFRP4 deficiency in Pyle’s disease. N. Engl. J. Med. 374, 2553–2562 (2016).

Article  Google Scholar 

Palomo, T., Glorieux, F. H. & Rauch, F. Circulating sclerostin in children and young adults with heritable bone disorders. J. Clin. Endocrinol. Metab. 99, E920–E925 (2014).

Article  PubMed  Google Scholar 

Guirado, E. et al. Disrupted protein expression and altered proteolytic events in hypophosphatemic dentin can be rescued by dentin matrix protein 1. Front. Physiol 11, 82 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013).

Article  PubMed  Google Scholar 

Ruppe, M. D. X-Linked Hypophosphatemia. in GeneReviews(®) (eds Adam, M. P. et al.) (University of Washington, Seattle, 1993).

Kornsuthisopon, C. et al. Non-canonical Wnt signaling participates in Jagged1-induced osteo/odontogenic differentiation in human dental pulp stem cells. Sci. Rep. 12, 7583 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Eapen, A. et al. Calcium-mediated stress kinase activation by DMP1 promotes osteoblast differentiation*. J. Biol. Chem. 285, 36339–36351 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Eapen, A. et al. Dentin phosphophoryn activates smad protein signaling through Ca2+-calmodulin-dependent protein kinase II in undifferentiated mesenchymal cells. J. Biol. Chem. 288, 8585–8595 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Narayanan, K. et al. Dual functional roles of dentin matrix protein 1 implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J. Biol. Chem. 278, 17500–17508 (2003).

Article  PubMed  Google Scholar 

Ann, E.-J. et al. Wnt5a controls Notch1 signaling through CaMKII-mediated degradation of the SMRT corepressor protein. J. Biol. Chem. 287, 36814–36829 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Tang, W. et al. A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc. Natl Acad. Sci. USA 105, 9697–9702 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Schmidt, E. E. et al. GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Res. 41, D1021–D1026 (2013).

Article  PubMed  Google Scholar 

Vijaykumar, A., Root, S. H. & Mina, M. Wnt/β-catenin signaling promotes the formation of preodontoblasts in vitro. J. Dent. Res. 100, 387–396 (2021).

Article  PubMed  Google Scholar 

Xu, M. et al. WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nat. Commun. 8, 15397 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Bae, C. H. et al. Wntless regulates dentin apposition and root elongation in the mandibular molar. J. Dent. Res. 94, 439–445 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Kikuchi, A., Yamamoto, H., Sato, A. & Matsumoto, S. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol. 204, 17–33 (2012).

Article  Google Scholar 

Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells Devoted Mol. Cell. Mech. 8, 645–654 (2003).

Article  Google Scholar 

Ni, X. et al. Low levels of serum sclerostin in adult patients with tumor-induced osteomalacia compared with X-linked hypophosphatemia. J. Clin. Endocrinol. Metab. 107, e361–e371 (2022).

Article  PubMed  Google Scholar 

Carpenter, K. A. et al. Sclerostin antibody improves phosphate metabolism hormones, bone formation rates, and bone mass in adult Hyp mice. Bone 154, 116201 (2022).

Article  PubMed  Google Scholar 

Carpenter, K. A. & Ross, R. D. Sclerostin antibody treatment increases bone mass and normalizes circulating phosphate levels in growing Hyp mice. J. Bone Miner. Res. 35, 596–607 (2019).

留言 (0)

沒有登入
gif