ACh Transfers: Homeostatic Plasticity of Cholinergic Synapses

Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX (2000) Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks. J Neurosci 20(1):66–75. https://doi.org/10.1523/JNEUROSCI.20-01-00066.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

André EA, Forcelli PA, Pak DT (2018) What goes up must come down: homeostatic synaptic plasticity strategies in neurological disease. Future Neurol 13(1):13–21. https://doi.org/10.2217/fnl-2017-0028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benson DM, Blitzer RD, Haroutunian V, Landau EM (1989) Functional muscarinic supersensitivity in denervated rat hippocampus. Brain Res 478:399–402. https://doi.org/10.1016/0006-8993(89)91524-2

Article  CAS  PubMed  Google Scholar 

Berg DK, Hall ZW (1975) Increased extrajunctional acetylcholine sensitivity produced by chronic post-synaptic neuromuscular blockade. J Physiol 244(3):659–676. https://doi.org/10.1113/jphysiol.1975.sp010818

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bird SJ, Aghajanian GK (1975) Denervation supersensitivity in the cholinergic septo- hippocampal pathway: a microiontophoretic study. Brain Res 100:355–370. https://doi.org/10.1016/0006-8993(75)90488-6

Article  CAS  PubMed  Google Scholar 

Bukharaeva EA, Skorinkin AI (2021) Cholinergic modulation of acetylcholine secretion at the neuromuscular junction. J Evol Biochem Physiol 57(2):372–385. https://doi.org/10.1134/S0022093021020174

Article  CAS  Google Scholar 

Bukhari N, Burman PN, Hussein A et al (2015) Unmasking proteolytic activity for adult visual cortex plasticity by the removal of Lynx1. J Neurosci 35:12693–12702. https://doi.org/10.1523/JNEUROSCI.4315-14.2015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Camargo W, Kushmerick C, Pinto E, Souza N, Cavalcante W, Souza-Neto F, Guatimosim S, Prado M, Guatimosim C, Naves L (2022) Homeostatic plasticity induced by increased acetylcholine release at the mouse neuromuscular junction. Neurobiol Aging 110:13–26. https://doi.org/10.1016/j.neurobiolaging.2021.10.010

Article  CAS  PubMed  Google Scholar 

Cecchi C et al (2005) Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J Cell Sci 118(15):3459–3470. https://doi.org/10.1242/jcs.02473

Article  CAS  PubMed  Google Scholar 

Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47(1):699–729. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214

Article  CAS  PubMed  Google Scholar 

Dean T, Xu R, Joiner W et al (2011) Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of shaker K+ channels. J Neurosci 31:11387–11395. https://doi.org/10.1523/JNEUROSCI.0502-11.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Djemil S, Chen X, Lee J et al (2020a) Activation of nicotinic acetylcholine receptors induces potentiation and synchronization within in vitro hippocampal networks. FASEB J 34:468–484. https://doi.org/10.1096/fasebj.2020.34.s1.07078

Article  Google Scholar 

Djemil S, Ressel CR, Abdel-Ghani M et al (2020b) Central cholinergic synapse formation in optimized primary septal-hippocampal co-cultures. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-020-00948-6

Article  PubMed  PubMed Central  Google Scholar 

Eadaim A, Hahm ET, Justice ED, Tsunoda S (2020) Cholinergic synaptic homeostasis is tuned by an NFAT-mediated α7 nAChR-Kv4/shal coupled regulatory system. Cell Rep 32:108119. https://doi.org/10.1016/j.celrep.2020.108119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldberg JA, Wilson CJ (2005) Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J Neurosci 25(44):10230–10238. https://doi.org/10.1523/JNEUROSCI.2734-05.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu Z, Lamb PW, Yakel JL (2012) Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci 32(36):12337–12348. https://doi.org/10.1523/JNEUROSCI.2129-12.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haam J et al (2018) Septal cholinergic neurons gate hippocampal output to entorhinal cortex via oriens lacunosum moleculare interneurons. Proc Natl Acad Sci USA 115(8):E1886–E1895. https://doi.org/10.1073/pnas.1712538115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hahm E-T, Nagaraja RY, Waro G, Tsunoda S (2018) Cholinergic homeostatic synaptic plasticity drives the progression of aβ-induced changes in neural activity. Cell Rep 24:342–354. https://doi.org/10.1016/j.celrep.2018.06.029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3(9):351–359. https://doi.org/10.1016/S1364-6613(99)01365-0

Article  CAS  PubMed  Google Scholar 

Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16(6):710–715. https://doi.org/10.1016/j.conb.2006.09.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasselmo ME, McGaughy J (2004) High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. In: Progress in Brain Research. Elsevier, Amsterdam, pp 207–231. doi: https://doi.org/10.1016/S0079-6123(03)45015-2

Janickova H, Prado VF, Prado MAM, El Mestikawy S, Bernard V (2017) Vesicular acetylcholine transporter (Vacht) over-expression induces major modifications of striatal cholinergic interneuron morphology and function. J Neurochem 142(6):857–875. https://doi.org/10.1111/jnc.14105

Article  CAS  PubMed  Google Scholar 

Jensen M et al (2012) Wnt signaling regulates acetylcholine receptor translocation and synaptic plasticity in the adult nervous system. Cell 149(1):173–187. https://doi.org/10.1016/j.cell.2011.12.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joseph A, Turrigiano GG (2017) All for one but not one for all: excitatory synaptic scaling and intrinsic excitability are coregulated by camkiv, whereas inhibitory synaptic scaling is under independent control. J Neurosci 37(28):6778–6785. https://doi.org/10.1523/JNEUROSCI.0618-17.2017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolisnyk B, Guzman MS, Raulic S, Fan J, Magalhaes AC, Feng G, Gros R, Prado VF, Prado MAM (2013) Chat-chr2-eyfp mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. J Neurosci 33(25):10427–10438. https://doi.org/10.1523/JNEUROSCI.0395-13.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konishi S, Tsunoo A, Otsuka M (1979) Enkephalins presynaptically inhibit cholinergic transmission in sympathetic ganglia. Nature 282(5738):515–516. https://doi.org/10.1038/282515a0

Article  CAS  PubMed  Google Scholar 

Lacor PN, Buniel MC, Furlow PW et al (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807. https://doi.org/10.1523/JNEUROSCI.3501-06.2007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lambo ME, Turrigiano GG (2013) Synaptic and intrinsic homeostatic mechanisms cooperate to increase l2/3 pyramidal neuron excitability during a late phase of critical period plasticity. J Neurosci 33(20):8810–8819. https://doi.org/10.1523/JNEUROSCI.4502-12.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee H-K, Kirkwood A (2019) Mechanisms of homeostatic synaptic plasticity in vivo. Front Cell Neurosci 13:520. https://doi.org/10.3389/fncel.2019.00520

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lezmy J, Gelman H, Katsenelson M, Styr B, Tikochinsky E, Lipinsky M, Peretz A, Slutsky I, Attali B (2020) M-current inhibition in hippocampal excitatory neurons triggers intrinsic and synaptic homeostatic responses at different temporal scales. J Neurosci 40(19):3694–3706. https://doi.org/10.1523/JNEUROSCI.1914-19.2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martella G et al (2009) Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: Role of endogenous acetylcholine. Brain 132(9):2336–2349. https://doi.org/10.1093/brain/awp194

Article  PubMed  PubMed Central  Google Scholar 

Milshtein-Parush H, Frere S, Regev L, Lahav C, Benbenishty A, Ben-Eliyahu S, Goshen I, Slutsky I (2017) Sensory deprivation triggers synaptic and intrinsic plasticity in the hippocampus. Cereb Cortex 27(6):3457–3470. https://doi.org/10.1093/cercor/bhx084

Article  PubMed  Google Scholar 

Morishita H, Miwa JM, Heintz N, Hensch TK (2010) Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330:1238–1240. https://doi.org/10.1126/science.1195320

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noronha-Matos JB, Oliveira L, Peixoto AR, Almeida L, Castellão-Santana LM, Ambiel CR, Alves-do Prado W, Correia-de-Sá P (2020) Nicotinic α7 receptor-induced adenos

留言 (0)

沒有登入
gif