Neuroinflammatory Response in Reward-Associated Psychostimulants and Opioids: A Review

Alizamini MM, Kavianpour M, Karimi-Haghighi S, Fatahi Z, Haghparast A (2018) Intra-hippocampal administration of orexin receptor antagonists dose-dependently attenuates reinstatement of morphine seeking behavior in extinguished rats. Peptides 110:40–46. https://doi.org/10.1016/j.peptides.2018.10.011

Article  CAS  PubMed  Google Scholar 

Arezoomandan R, Haghparast A (2016) Administration of the glial cell modulator, minocycline, in the nucleus accumbens attenuated the maintenance and reinstatement of morphine-seeking behavior. Can J Physiol Pharmacol 94(3):257–264. https://doi.org/10.1139/cjpp-2015-0209

Article  CAS  PubMed  Google Scholar 

Attarzadeh-Yazdi G, Karimi S, Azizi P, Yazdi-Ravandi S, Hesam S, Haghparast A (2013) Inhibitory effects of forced swim stress and corticosterone on the acquisition but not expression of morphine-induced conditioned place preference: involvement of glucocorticoid receptor in the basolateral amygdala. Behav Brain Res 252:339–346. https://doi.org/10.1016/j.bbr.2013.06.018

Article  CAS  PubMed  Google Scholar 

Attarzadeh-Yazdi G, Arezoomandan R, Haghparast A (2014) Minocycline, an antibiotic with inhibitory effect on microglial activation, attenuates the maintenance and reinstatement of methamphetamine-seeking behavior in rat. Prog Neuropsychopharmacol Biol Psychiatry 53:142–148. https://doi.org/10.1016/j.pnpbp.2014.04.008

Article  CAS  PubMed  Google Scholar 

Azam S, Jakaria M, Kim IS, Kim J, Haque ME, Choi DK (2019) Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol 10:1000. https://doi.org/10.3389/fimmu.2019.01000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Backstrom P, Hyytia P (2007) Involvement of AMPA/kainate, NMDA, and mGlu5 receptors in the nucleus accumbens core in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 192(4):571–580. https://doi.org/10.1007/s00213-007-0753-8

Article  CAS  PubMed  Google Scholar 

Baik JH (2020) Stress and the dopaminergic reward system. Exp Mol Med 52(12):1879–1890. https://doi.org/10.1038/s12276-020-00532-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ballestín R, Alegre-Zurano L, Ferrer-Pérez C, Cantacorps L, Miñarro J, Valverde O, Rodríguez-Arias M (2020) Neuroinflammatory and behavioral susceptibility profile of mice exposed to social stress towards cocaine effects. Prog Neuropsychopharmacol Biol Psychiatry 105:110123. https://doi.org/10.1016/j.pnpbp.2020.110123

Article  CAS  PubMed  Google Scholar 

Banisadr G, Fontanges P, Haour F, Kitabgi P, Rostène W, Mélik Parsadaniantz S (2002) Neuroanatomical distribution of CXCR4 in adult rat brain and its localization in cholinergic and dopaminergic neurons. Eur J Neurosci 16(9):1661–1671. https://doi.org/10.1046/j.1460-9568.2002.02237.x

Article  PubMed  Google Scholar 

Banjara M, Ghosh C (2017) Sterile neuroinflammation and strategies for therapeutic intervention. Int J Inflamm. https://doi.org/10.1155/2017/8385961

Article  Google Scholar 

Bardo MT (1998) Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 12(1–2):37–67. https://doi.org/10.1615/critrevneurobiol.v12.i1-2.30

Article  CAS  PubMed  Google Scholar 

Bauer ME, Teixeira AL (2019) Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci 1437(1):57–67. https://doi.org/10.1111/nyas.13712

Article  CAS  PubMed  Google Scholar 

Beardsley PM, Shelton KL, Hendrick E, Johnson KW (2010) The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse. Eur J Pharmacol 637(1–3):102–108. https://doi.org/10.1016/j.ejphar.2010.04.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17(1):49–59. https://doi.org/10.1038/nri.2016.123

Article  CAS  PubMed  Google Scholar 

Bell RL, Lopez MF, Cui C, Egli M, Johnson KW, Franklin KM, Becker HC (2015) Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict Biol 20(1):38–42. https://doi.org/10.1111/adb.12106

Article  CAS  PubMed  Google Scholar 

Benjamins JA (2013) Direct effects of secretory products of immune cells on neurons and glia. J Neurol Sci 333(1):30–36. https://doi.org/10.1016/j.jns.2013.06.001

Article  CAS  PubMed  Google Scholar 

Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B, Schiller M et al (2016) Activation of the reward system boosts innate and adaptive immunity. Nat Med 22(8):940–944. https://doi.org/10.1038/nm.4133

Article  CAS  PubMed  Google Scholar 

Blednov YA, Da Costa AJ, Tarbox T, Ponomareva O, Messing RO, Harris RA (2018) Apremilast alters behavioral responses to ethanol in mice: I. reduced consumption and preference. Alcohol Clin Exp Res 42(5):926–938. https://doi.org/10.1111/acer.13616

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowman GL, Dayon L, Kirkland R, Wojcik J, Peyratout G, Severin IC et al (2018) Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement 14(12):1640–1650. https://doi.org/10.1016/j.jalz.2018.06.2857

Article  PubMed  Google Scholar 

Brady LJ, Hofford RS, Tat J, Calipari ES, Kiraly DD (2019) Granulocyte-colony stimulating factor alters the pharmacodynamic properties of cocaine in female mice. ACS Chem Neurosci 10(10):4213–4220. https://doi.org/10.1021/acschemneuro.9b00309

Article  CAS  PubMed  Google Scholar 

Broadbear JH, Winger G, Woods JH (2004) Self-administration of fentanyl, cocaine and ketamine: effects on the pituitary-adrenal axis in rhesus monkeys. Psychopharmacology 176(3–4):398–406. https://doi.org/10.1007/s00213-004-1891-x

Article  CAS  PubMed  Google Scholar 

Burkovetskaya ME, Liu Q, Vadukoot AK, Gautam N, Alnouti Y, Kumar S et al (2020) KVA-D-88, a novel preferable phosphodiesterase 4B inhibitor, decreases cocaine-mediated reward properties in vivo. ACS Chem Neurosci 11(15):2231–2242. https://doi.org/10.1021/acschemneuro.0c00170

Article  CAS  PubMed  Google Scholar 

Calipari ES, Godino A, Peck EG, Salery M, Mervosh NL, Landry JA et al (2018) Granulocyte-colony stimulating factor controls neural and behavioral plasticity in response to cocaine. Nat Commun 9(1):9. https://doi.org/10.1038/s41467-017-01881-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cannella LA, Andrews AM, Tran F, Razmpour R, McGary H, Collie C et al (2020) Experimental traumatic brain injury during adolescence enhances cocaine rewarding efficacy and dysregulates dopamine and neuroimmune systems in brain reward substrates. J Neurotrauma 37(1):27–42. https://doi.org/10.1089/neu.2019.6472

Article  PubMed  Google Scholar 

Carboni E, Spielewoy C, Vacca C, Nosten-Bertrand M, Giros B, Di Chiara G (2001) Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene. J Neurosci 21(9):RC141–RC144. https://doi.org/10.1523/JNEUROSCI.21-09-j0001.2001

Article  PubMed  PubMed Central  Google Scholar 

Carroll ME, Campbell UC, Heideman P (2001) Ketoconazole suppresses food restriction-induced increases in heroin self-administration in rats: sex differences. Exp Clin Psychopharmacol 9(3):307–316. https://doi.org/10.1037//1064-1297.9.3.307

Article  CAS  PubMed  Google Scholar 

Chavoshinezhad S, Mohseni Kouchesfahani H, Salehi MS, Pandamooz S, Ahmadiani A, Dargahi L (2019) Intranasal interferon beta improves memory and modulates inflammatory responses in a mutant APP-overexpressing rat model of Alzheimer’s disease. Brain Res Bull 150:297–306. https://doi.org/10.1016/j.brainresbull.2019.06.015

Article  CAS  PubMed  Google Scholar 

Chen JX, Huang KM, Liu M, Jiang JX, Liu JP, Zhang YX et al (2017) Activation of TLR4/STAT3 signaling in VTA contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Behav Brain Res 335:151–157. https://doi.org/10.1016/j.bbr.2017.08.022

Article  CAS  PubMed  Google Scholar 

Choi DY, Lee MK, Hong JT (2013) Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration. Neurobiol Dis 49:159–168. https://doi.org/10.1016/j.nbd.2012.08.001

Article  CAS  PubMed  Google Scholar 

Contarino A, Kitchener P, Vallée M, Papaleo F, Piazza PV (2017) CRF(1) receptor-deficiency increases cocaine reward. Neuropharmacology 117:41–48. https://doi.org/10.1016/j.neuropharm.2017.01.024

Article  CAS  PubMed  Google Scholar 

Cooper S, Robison AJ, Mazei-Robison MS (2017) Reward circuitry in addiction. Neurotherapeutics 14(3):687–697. https://doi.org/10.1007/s13311-017-0525-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Covington HE 3rd, Miczek KA (2005) Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology 183(3):331–340. https://doi.org/10.1007/s00213-005-0190-5

Article  CAS  PubMed  Google Scholar 

Cui C, Shurtleff D, Harris RA (2014) Neuroimmune mechanisms of alcohol and drug addiction. Int Rev Neurobiol 118:1–12. https://doi.org/10.1016/b978-0-12-801284-0.00001-4

Article  PubMed  PubMed Central  Google Scholar 

Der-Avakian A, Will MJ, Bland ST, Deak T, Nguyen KT, Schmid MJ et al (2005) Surgical and pharmacological suppression of glucocorticoids prevents the enhancement of morphine conditioned place preference by uncontrollable stress in rats. Psychopharmacology 179(2):409–417. https://doi.org/10.1007/s00213-004-2041-1

Article 

留言 (0)

沒有登入
gif