Nanoparticle-mediated cancer cell therapy: basic science to clinical applications

Sung, H., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. 71(3), 209–249.

Castiglioni, A. (1947). A history of medicine. Book. https://doi.org/10.4324/9780429019883

Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46.

Article  CAS  PubMed  Google Scholar 

Pedmedical. Healthy cell. 2022; Available from: https://www.shutterstock.com/discover/stock-assets-uk-0220?c3apidt=p11180842815&gclid=CjwKCAjwhNWZBhB_EiwAPzlhNkuEWQgNIi53MLZ7pPjOlHI2burmAnSGE3NyvROPpvHk2zrj9nG3cRoCxwUQAvD_BwE&gclsrc=aw.ds&kw=shutterstock.

Clinic, C. Carcinoma. 2019; Available from: https://my.clevelandclinic.org/health/diseases/23180-carcinoma#:~:text=Carcinoma%20is%20cancer%20that%20forms,head%20and%20neck%20are%20carcinomas.

Selchick, F. Cancer: Types, causes, prevention, and more. 2022; Available from: https://www.healthline.com/health/cancer#:~:text=Types%20of%20cancer&text=Carcinoma%20is%20a%20cancer%20that,cancers%20of%20the%20immune%20system.

Institute, N.C. What Is Cancer? 2021; Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer#:~:text=Cancer%20is%20a%20disease%20caused,are%20also%20called%20genetic%20changes.

Cooper, J. L., & Robinson, P. (2000). The argument for making large classes seem small. New Directions for Teaching and Learning, 2000(81), 5–16.

Article  Google Scholar 

Editorial. (2021). Advancing cancer therapy. Nature Cancer, 2(3), 245–246. https://doi.org/10.1038/s43018-021-00192-x

Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology, 7(11), 653–664.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, J.C.-M., & Zhang, L. (2009). Therapeutic nanoparticles to combat cancer drug resistance. Current Drug Metabolism, 10(8), 836–841.

Article  CAS  PubMed  Google Scholar 

Peer, D., et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760.

Article  CAS  PubMed  Google Scholar 

Naud, C., et al. (2020). Cancer treatment by magneto-mechanical effect of particles, a review. Nanoscale Advances, 2(9), 3632–3655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy, C. J., et al. (2015). Biological responses to engineered nanomaterials: Needs for the next decade. ACS Central Science, 1(3), 117–123.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morton, J. (1997). Reviews. Thesis Eleven, 51(1), 131–132.

Article  Google Scholar 

Ghossain, A., & Ghossain, M. A. (2009). History of mastectomy before and after Halsted. Le Journal medical libanais. The Lebanese medical journal, 57(2), 65–71.

PubMed  Google Scholar 

Sankaranarayanan, R., et al. (2013). Long term effect of visual screening on oral cancer incidence and mortality in a randomized trial in Kerala India. Oral Oncology, 49(4), 314–321.

Article  PubMed  Google Scholar 

Wang, K., & Tepper, J. E. (2021). Radiation therapy-associated toxicity: Etiology, management, and prevention. CA: A Cancer Journal for Clinicians, 71(5), 437–454.

PubMed  Google Scholar 

Bird, S. M. (2015). The 1959 meeting in Vienna on controlled clinical trials–A methodological landmark. Journal of the Royal Society of Medicine, 108(9), 372–375.

Article  PubMed  PubMed Central  Google Scholar 

Cho, B. (2018). Intensity-modulated radiation therapy: A review with a physics perspective. Radiation Oncology Journal, 36(1), 1–10.

Article  PubMed  PubMed Central  Google Scholar 

Goodman, L. S., et al. (1946). Nitrogen mustard therapy: Use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. Journal of the American Medical Association, 132(3), 126–132.

Article  CAS  PubMed  Google Scholar 

Farber, S., et al. (1948). Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). New England Journal of Medicine, 238(23), 787–793.

Article  CAS  PubMed  Google Scholar 

Hitchings, G. H., et al. (1950). Antagonists of nucleic acid derivatives: I The Lactobacillus casei model. Journal of Biological Chemistry, 183(1), 1–9.

Article  CAS  Google Scholar 

De Rooij, J. D., Zwaan, C. M., & van den Heuvel-Eibrink, M. (2015). Pediatric AML: From biology to clinical management. Journal of clinical medicine, 4(1), 127–149.

Article  PubMed  PubMed Central  Google Scholar 

Kim, H. (2020). Treatments for children and adolescents with AML. Blood research, 55(S1), S5–S13.

Article  PubMed  Google Scholar 

Hermann, P. C., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.

Article  CAS  PubMed  Google Scholar 

Slats, A., et al. (2005). Causes of death–other than progressive leukemia–in childhood acute lymphoblastic (ALL) and myeloid leukemia (AML): The Dutch Childhood Oncology Group experience. Leukemia, 19(4), 537–544.

Article  CAS  PubMed  Google Scholar 

Bista, R., et al. (2017). Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells. Journal of Experimental & Clinical Cancer Research, 36(1), 1–14.

Article  Google Scholar 

Aleem, E., & Arceci, R. J. (2015). Targeting cell cycle regulators in hematologic malignancies. Frontiers in cell and developmental biology, 3, 16.

Article  PubMed  PubMed Central  Google Scholar 

Lee, Y. T., Tan, Y. J., & Oon, C. E. (2018). Molecular targeted therapy: Treating cancer with specificity. European journal of pharmacology, 834, 188–196.

Article  CAS  PubMed  Google Scholar 

Yan, L., Rosen, N., & Arteaga, C. (2011). Targeted cancer therapies. Chinese journal of cancer, 30(1), 1.

Article  PubMed  PubMed Central  Google Scholar 

Mansour, M. A., Caputo, V. S., & Aleem, E. (2021). Highlights on selected growth factors and their receptors as promising anticancer drug targets. The International Journal of Biochemistry & Cell Biology, 140, 106087.

Article  CAS  Google Scholar 

Nadukkandy, A. S., et al. (2022). Tracing new landscapes in the arena of nanoparticle-based cancer immunotherapy. Frontiers in Nanotechnology, 4, 911063.

Article  Google Scholar 

Pankhurst, Q. A., et al. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of physics D: Applied physics, 36(13), R167.

Article  CAS  Google Scholar 

Cheng, Y., et al. (2014). Multifunctional nanoparticles for brain tumor imaging and therapy. Advanced drug delivery reviews, 66, 42–57.

Article  CAS  PubMed  Google Scholar 

Stephen, Z. R., Kievit, F. M., & Zhang, M. (2011). Magnetite nanoparticles for medical MR imaging. Materials Today, 14(7–8), 330–338.

Article  CAS  PubMed  Google Scholar 

Jin, R., et al. (2014). Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: Design considerations and clinical applications. Current opinion in pharmacology, 18, 18–27.

Article  CAS  PubMed  Google Scholar 

Arruebo, M., et al. (2007). Magnetic nanoparticles for drug delivery. Nano Today, 2(3), 22–32.

Article  Google Scholar 

Mody, V. V., et al. (2014). Magnetic nanoparticle drug delivery systems for targeting tumor. Applied Nanoscience, 4(4), 385–392.

Article  CAS  Google Scholar 

Sun, C., Lee, J. S., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews, 60(11), 1252–1265.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gobbo, O. L., et al. (2015). Magnetic nanoparticles in cancer theranostics. Theranostics, 5(11), 1249.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, Y., et al. (2015). Emerging translational research on magnetic nanoparticles for regenerative medicine. Chemical Society Reviews, 44(17), 6306–6329.

Article  CAS  PubMed  Google Scholar 

Zhang, Q., et al. (2017). Large-scale immuno-magnetic cell sorting of T cells based on a self-designed high-throughput system for potential clinical application. Nanoscale, 9(36), 13592–13599.

Article  CAS  PubMed  Google Scholar 

Cartmell, S., et al. (2005). Use of magnetic particles to apply mechanical forces for bone tissue engineering purposes. in Journal of Physics: Conference Series. IOP Publishing.

Sanchez, C., et al. (2014). Targeting a G-protein-coupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death. ACS Nano, 8(2), 1350–1363.

Article  CAS  PubMed  Google Scholar 

Kafrouni, L., & Savadogo, O. (2016). Recent progress on magnetic nanoparticles for magnetic hyperthermia. Progress in Biomaterials, 5(3), 147–160.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif