Design of a potential Sema4A-based multi-epitope vaccine to combat triple-negative breast cancer: an immunoinformatic approach

Lesions L, Geyer FC, Pareja F, Weigelt B, Rakha E, Ellis IO, Schnitt SJ, Reis-Filho JS. The spectrum of triple-negative breast disease. Am J Pathol. 2017;187:2139–51.

Article  Google Scholar 

Liu Z, Li M, Jiang Z. A comprehensive immunologic portrait of triple-negative breast cancer. Transl Oncol. 2018;11:311–29.

Article  PubMed  PubMed Central  Google Scholar 

Corti C, Giachetti PPMB, Eggermont AMM, Delaloge S, Curigliano G. Therapeutic vaccines for breast cancer: has the time finally come? Eur J Cancer. 2022;160:150–74.

Article  CAS  PubMed  Google Scholar 

Katz H, Alsharedi M. Immunotherapy in triple-negative breast cancer. Med Oncol. 2018;35:1–9.

Article  CAS  Google Scholar 

Abdou Y, Goudarzi A, Yu JX, Upadhaya S, Vincent B, Carey LA. Immunotherapy in triple negative breast cancer: beyond checkpoint inhibitors. Npj Breast Cancer. 2022;8(1):121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Zhang F, Liu Z, Fan Z. Immunotherapy for triple-negative breast cancer: combination strategies to improve outcome. Cancers. 2023;15(1):321.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atapour A, Negahdaripour M, Ghasemi Y, Razmjuee D, Savardashtaki A, Mousavi SM, Hashemi SA, Aliabadi A, Nezafat N. In silico designing a candidate vaccine against breast cancer. Int J Pept Res Ther. 2020;26:369–80.

Article  CAS  Google Scholar 

Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: progress and challenges. Vaccines. 2014;2:515–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chun S, Muthu M, Gopal J, Paul D, Kim DH, Gansukh E, Anthonydhason V. The unequivocal preponderance of biocomputation in clinical virology. RSC Adv. 2018;8:17334–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu CC, Yang H, Zhang R, Zhao JJ, Hao DJ. Tumour-associated antigens and their anti-cancer applications. Eur J Cancer Care. 2017;26(5):e12446.

Article  Google Scholar 

Mahdevar E, Safavi A, Abiri A, Kefayat A, Hejazi SH, Miresmaeili SM, Iranpur MV. Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. J Biomol Struct Dyn. 2022;40:6363–80.

Article  CAS  PubMed  Google Scholar 

Parvizpour S, Razmara J, Pourseif MM, Omidi Y. In silico design of a triple-negative breast cancer vaccine by targeting cancer testis antigens. BioImpacts. 2019;9:45–56.

Article  CAS  PubMed  Google Scholar 

Nandini H, Krishnamoorthy R, Karuppasamy R. Designing a novel SOX9 based multi-epitope vaccine to combat metastatic triple-negative breast cancer using immunoinformatics approach. Mol Divers. 2022. https://doi.org/10.1007/s11030-022-10539-w.

Article  Google Scholar 

Anderson GS, Ballester-Beltran J, Giotopoulos G, Guerrero JA, Surget S, Williamson JC, So T, Bloxham D, Aubareda A, Asby R, Walker I. Unbiased cell surface proteomics identifies SEMA4A as an effective immunotherapy target for myeloma. Am J Hematol. 2022;139:2471–82.

CAS  Google Scholar 

Suga Y, Nagatomo I, Kinehara Y, Koyama S, Okuzaki D, Osa A, Naito Y, Takamatsu H, Nishide M, Nojima S, Ito D. IL-33 induces sema4a expression in dendritic cells and exerts antitumor immunity. J Immunol. 2021;207:1456–67.

Article  CAS  PubMed  Google Scholar 

Jiang J, Zhang F, Wan Y, Fang K, Yan ZD, Ren XL, Zhang R. Semaphorins as potential immune therapeutic targets for cancer. Front Oncol. 2022;12:48.

Google Scholar 

Gao C, Wang L, Zhao W, Zhang B, Zhang J. The expression and clinical significance of sema4a in triple negative breast cancer. J Clin Nurs Res. 2019;4:4–7.

Google Scholar 

Liu X, Sun Y, Tian W, Wang F, Lv X, Wang M, Sun T, Zhang J, Wang L, Han M. SEMA4A responds to hypoxia and is involved in breast cancer progression. Biol Pharm Bull. 2018;41:1791–6.

Article  CAS  PubMed  Google Scholar 

Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ. The universal protein resource (UniProt). Nucleic Acids Res. 2005;33:154–9.

Article  Google Scholar 

Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol. 2017;199(9):3360–8.

Article  CAS  PubMed  Google Scholar 

Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res. 2020;19:2304–15.

Article  CAS  PubMed  Google Scholar 

Saha S, Raghava GPS. Prediction methods for B-cell epitopes. Methods Mol Biol. 2007;409:387–94.

Article  CAS  PubMed  Google Scholar 

Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008;9:1–8.

Article  Google Scholar 

Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007;8:1–7.

Article  Google Scholar 

Dhanda SK, Vir P, Raghava GP. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct. 2013;8(1):1–5.

Article  Google Scholar 

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0073957.

Article  PubMed  PubMed Central  Google Scholar 

Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP vol 2—a server for in silico prediction of allergens. J Mol Model. 2014. https://doi.org/10.1007/s00894-014-2278-5.

Article  PubMed  Google Scholar 

Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A, Keşmir C, Peters B. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput Biol. 2013. https://doi.org/10.1371/journal.pcbi.1003266.

Article  PubMed  PubMed Central  Google Scholar 

Dariushnejad H, Ghorbanzadeh V, Akbari S, Hashemzadeh P. Design of a novel recombinant multi-epitope vaccine against triple-negative breast cancer. Iran Biomed J. 2022;26:160–74.

PubMed  PubMed Central  Google Scholar 

Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. Proteomics Protoco Handbook. 2005. https://doi.org/10.1385/1-59259-890-0:571.

Article  Google Scholar 

Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 2006;7(1):153.

Article  Google Scholar 

Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292:195–202.

Article  CAS  PubMed  Google Scholar 

Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:526–31.

Article  Google Scholar 

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91.

Article  CAS  Google Scholar 

Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2:1511–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luthy R, Bowei J, Einsenberg D. Verify3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997;277:396–404.

Article  PubMed  Google Scholar 

Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:407–10.

Article  Google Scholar 

Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The cluspro web server for protein-protein docking. Nat Protoc. 2017;12:255–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Muhanna S, Al-Muhanna A. Construction and transformation of recombinant pet28a expression vector in bl21 (de3) cells with basic bioinformatics analysis. Biochem Cell Arch. 2018;18(1):147–52.

Google Scholar 

Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE. 2010;5(4):e9862.

Article  PubMed  PubMed Central  Google Scholar 

Kessler JH, Melief CJM. Identification of T-cell epitopes for cancer immunotherapy. Leukemia. 2007;21:1859–74.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif