Use of Structured Electronic Health Records Data Elements for the Development of Computable Phenotypes to Identify Potential Adverse Events Associated with Intravenous Immunoglobulin Infusion

United States Food and Drug Adminitration. What is a Serious Adverse Event? [Internet]. 2022. https://www.fda.gov/safety/reporting-serious-problems-fda/what-serious-adverse-event. Accessed 10 Jan 2022.

Coloma PM, Trifirò G, Patadia V, Sturkenboom M. Postmarketing safety surveillance: where does signal detection using electronic healthcare records fit into the big picture? Drug Saf. 2013;36:183–97.

Article  PubMed  Google Scholar 

Richesson RL, Hammond WE, Nahm M, Wixted D, Simon GE, Robinson JG, et al. Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. J Am Med Inform Assoc. 2013;20:e226–31.

Article  PubMed  PubMed Central  Google Scholar 

Hurst JH, Liu Y, Maxson PJ, Permar SR, Boulware LE, Goldstein BA. Development of an electronic health records datamart to support clinical and population health research. J Clin Transl Sci. 2020;5: e13.

Article  PubMed  PubMed Central  Google Scholar 

Tang M, Goldstein BA, He J, Hurst JH, Lang JE. Performance of a computable phenotype for pediatric asthma using the problem list. Ann Allergy Asthma Immunol. 2020;125:611-613.e1.

Article  PubMed  PubMed Central  Google Scholar 

Graham J, Iverson A, Monteiro J, Weiner K, Southall K, Schiller K, et al. Applying computable phenotypes within a common data model to identify heart failure patients for an implantable cardiac device registry. Int J Cardiol Heart Vasc. 2022;39: 100974.

PubMed  PubMed Central  Google Scholar 

Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J-C, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43:1130–9.

Article  PubMed  Google Scholar 

Weeks J, Pardee R. Learning to share health care data: a brief timeline of influential common data models and distributed health data networks in U.S. Health Care Research. EGEMS (Wash DC). 2019;7:4.

PubMed  PubMed Central  Google Scholar 

Bonilla FA. Intravenous and subcutaneous immunoglobulin G replacement therapy. Allergy Asthma Proc. 2016;37:426–31.

Article  PubMed  Google Scholar 

Perez EE, Orange JS, Bonilla F, Chinen J, Chinn IK, Dorsey M, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immunol. 2017;139:S1-46.

Article  CAS  PubMed  Google Scholar 

Guo Y, Tian X, Wang X, Xiao Z. adverse effects of immunoglobulin therapy. Front Immunol. 2018;9:1299.

Article  PubMed  PubMed Central  Google Scholar 

Ammann EM, Haskins CB, Fillman KM, Ritter RL, Gu X, Winiecki SK, et al. Intravenous immune globulin and thromboembolic adverse events: a systematic review and meta-analysis of RCTs. Am J Hematol. 2016;91:594–605.

Article  PubMed  Google Scholar 

Cherin P, Marie I, Michallet M, Pelus E, Dantal J, Crave J-C, et al. Management of adverse events in the treatment of patients with immunoglobulin therapy: a review of evidence. Autoimmun Rev. 2016;15:71–81.

Article  CAS  PubMed  Google Scholar 

Späth PJ, Granata G, La Marra F, Kuijpers TW, Quinti I. On the dark side of therapies with immunoglobulin concentrates: the adverse events. Front Immunol. 2015;6:11.

Article  PubMed  PubMed Central  Google Scholar 

R Core Team. R: A language and environment for statistical computing. [Internet]. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 10 Jan 2022.

Di Giovanni R, Cochrane A, Parker J, Lewis DJ. Adverse events in the digital age and where to find them. Pharmacoepidemiol Drug Saf. 2022;31(11):1131–1139. https://doi.org/10.1002/pds.5532

Markvardsen LH, Christiansen I, Harbo T, Jakobsen J. Hemolytic anemia following high dose intravenous immunoglobulin in patients with chronic neurological disorders. Eur J Neurol. 2014;21:147–52.

Article  CAS  PubMed  Google Scholar 

Shin H, Lee S. An OMOP-CDM based pharmacovigilance data-processing pipeline (PDP) providing active surveillance for ADR signal detection from real-world data sources. BMC Med Inform Decis Mak. 2021;21:159.

Article  PubMed  PubMed Central  Google Scholar 

Martinez C, Wallenhorst C, van Nunen S. Intravenous immunoglobulin and the current risk of moderate and severe anaphylactic events, a cohort study. Clin Exp Immunol. 2021;206:384–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spadaro G, Vultaggio A, Alberto Bosi A, Reichert D, Janssen J, Lamacchia D, et al. Rapid infusions of human normal immunoglobulin 50g/l are safe and well tolerated in immunodeficiencies and immune thrombocytopenia. Int Immunopharmacol. 2017;44:38–42.

Article  CAS  PubMed  Google Scholar 

Arnold DM, Heddle NM, Cook RJ, Hsia C, Blostein M, Jamula E, et al. Perioperative oral eltrombopag versus intravenous immunoglobulin in patients with immune thrombocytopenia: a non-inferiority, multicentre, randomised trial. Lancet Haematol. 2020;7:e640–8.

Article  PubMed  Google Scholar 

Savaşan S, Tuzcu V, Warrier I, Karpawich P. Cardiac rhythm abnormalities during intravenous immunoglobulin G infusion for treatment of thrombocytopenia. J Pediatr Hematol Oncol. 1997;19:254–7.

Article  PubMed  Google Scholar 

Jin PH, Shin SC, Dhamoon MS. Risk of thrombotic events after inpatient intravenous immunoglobulin or plasma exchange for neurologic disease: A case-crossover study. Muscle Nerve. 2020;62:327–32.

Article  CAS  PubMed  Google Scholar 

Wittstock M, Benecke R, Zettl UK. Therapy with intravenous immunoglobulins: complications and side-effects. Eur Neurol. 2003;50:172–5.

Article  CAS  PubMed  Google Scholar 

Ammann EM, Cuker A, Carnahan RM, Perepu US, Winiecki SK, Schweizer ML, et al. Chart validation of inpatient International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) administrative diagnosis codes for venous thromboembolism (VTE) among intravenous immune globulin (IGIV) users in the Sentinel Distributed Database. Medicine (Baltimore). 2018;97: e9960.

Article  PubMed  Google Scholar 

Bruggeman CW, Nagelkerke SQ, Lau W, Manlhiot C, de Haas M, van Bruggen R, et al. Treatment-associated hemolysis in Kawasaki disease: association with blood-group antibody titers in IVIG products. Blood Adv. 2020;4:3416–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scott DE, Epstein JS. Hemolytic adverse events with immune globulin products: product factors and patient risks. Transfusion. 2015;55:S2-5.

Article  PubMed  Google Scholar 

Kirby JC, Speltz P, Rasmussen LV, Basford M, Gottesman O, Peissig PL, et al. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability. J Am Med Inform Assoc. 2016;23:1046–52.

Article  PubMed  PubMed Central  Google Scholar 

PCORnet: The National Patient-Centered Clinical Research Network [Internet]. [cited 2018 Oct 27]. https://pcornet.org/. Accessed 10 Jan 2022.

Welcome to OMOP – OHDSI [Internet]. [cited 2022 Apr 12]. https://ohdsi.org/omop/. Accessed 10 Jan 2022.

留言 (0)

沒有登入
gif