Down-converting luminescent optoelectronics and their applications

Metal-halide perovskites• Enhancement based on nanophotonic/plasmonic structures174,175174. A. Kessel, C. Frydendahl, S. R. K. C. Indukuri, N. Mazurski, P. Arora, and U. Levy, Adv. Opt. Mater. 8, 2001627 (2020). https://doi.org/10.1002/adom.202001627175. R. Siavash Moakhar, S. Gholipour, S. Masudy‐Panah, A. Seza, A. Mehdikhani, N. Riahi‐Noori, S. Tafazoli, N. Timasi, Y. F. Lim, and M. Saliba, Adv. Sci. 7, 1902448 (2020). https://doi.org/10.1002/advs.201902448• Optimizing chemical composition and structure178178. S. Wang, Z. Song, Y. Kong, and Q. Liu, J. Lumin. 212, 250 (2019). https://doi.org/10.1016/j.jlumin.2019.04.036• Reducing crystal size near to or less than the Bohr’s radius177177. H. M. Jang, J.-S. Kim, J.-M. Heo, and T.-W. Lee, APL Mater. 8, 020904 (2020). https://doi.org/10.1063/1.5136308• Ion substitution with composition adjustment181181. H. Yin, J. Chen, P. Guan, D. Zheng, Q. Kong, S. Yang, P. Zhou, B. Yang, T. Pullerits, K. Han, H. Yin, D. Zheng, Q. Kong, P. Zhou, K. Han, P. Guan, S. Yang, B. Yang, and J. Chen, Angew. Chem. 133, 22875 (2021). https://doi.org/10.1002/ange.202108133• Heterovalent substitution176176. S. Khalfin and Y. Bekenstein, Nanoscale 11, 8665 (2019). https://doi.org/10.1039/c9nr01031a• Doping with transition-metal ions179179. S. Gull, M. H. Jamil, X. Zhang, H.-s. Kwok, and G. Li, ChemistryOpen 11, e202100285 (2022). https://doi.org/10.1002/open.202100285• Reducing to lower dimensionality (e.g., 2D or 0D)177177. H. M. Jang, J.-S. Kim, J.-M. Heo, and T.-W. Lee, APL Mater. 8, 020904 (2020). https://doi.org/10.1063/1.5136308• Affected by the morphology, structural interface, and phases182182. R. Chuliá-Jordán and E. J. Juarez-Perez, J. Phys. Chem. C 126, 3466 (2022). https://doi.org/10.1021/acs.jpcc.1c08867• Compositional engineering177177. H. M. Jang, J.-S. Kim, J.-M. Heo, and T.-W. Lee, APL Mater. 8, 020904 (2020). https://doi.org/10.1063/1.5136308• Lower dimensionality tends to give shorter lifetime183,184183. E. Ruggeri, M. Anaya, K. Gałkowski, G. Delport, F. U. Kosasih, A. Abfalterer, S. Mackowski, C. Ducati, S. D. Stranks, E. Ruggeri, M. Anaya, K. Gałkowski, G. Delport, A. Abfalterer, S. D. Stranks, S. Mackowski, F. U. Kosasih, and C. Ducati, Adv. Mater. 31, 1905247 (2019). https://doi.org/10.1002/adma.201905247184. Q. Zhang, L. Chu, F. Zhou, W. Ji, and G. Eda, Adv. Mater. 30, 1704055 (2018). https://doi.org/10.1002/adma.201704055• Increasing quantum confinement based on reduced dimensionality177177. H. M. Jang, J.-S. Kim, J.-M. Heo, and T.-W. Lee, APL Mater. 8, 020904 (2020). https://doi.org/10.1063/1.5136308• Chemically passivating defect states at the grain boundaries to eliminate nonradiative decay pathways180180. D. W. Dequilettes, S. Koch, S. Burke, R. K. Paranji, A. J. Shropshire, M. E. Ziffer, and D. S. Ginger, ACS Energy Lett. 1, 438 (2016). https://doi.org/10.1021/acsenergylett.6b00236• Ligand passivation will elongate the lifetime180180. D. W. Dequilettes, S. Koch, S. Burke, R. K. Paranji, A. J. Shropshire, M. E. Ziffer, and D. S. Ginger, ACS Energy Lett. 1, 438 (2016). https://doi.org/10.1021/acsenergylett.6b00236• Subject to temperature-/pump fluence-dependent lifetime185185. Y. Chen, T. Wang, Z. Li, H. Li, T. Ye, C. Wetzel, H. Li, and S.-F. Shi, Sci. Rep. 8, 16482 (2018). https://doi.org/10.1038/s41598-018-34645-8MOFs• Incorporation with metals of larger atomic numbers (e.g., Hf or Ln)186,187186. S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset, and K. P. Lillerud, Phys. Rev. B 86, 125429 (2012). https://doi.org/10.1103/physrevb.86.125429187. S. E. Gilson, M. Fairley, P. Julien, A. G. Oliver, S. L. Hanna, G. Arntz, O. K. Farha, J. A. Laverne, and P. C. Burns, J. Am. Chem. Soc. 142, 13299 (2020). https://doi.org/10.1021/jacs.0c05272• π–π stacking between adjacent conjugated linkers or between a linker and a guest molecule189189. M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk, Chem. Soc. Rev. 38, 1330 (2009). https://doi.org/10.1039/b802352m• Coordinating highly emissive chromophoric ligands to MOF backbone192192. Y. Lin, L. Yu, H. Wang, and J. Li, CrystEngComm 22, 5946 (2020). https://doi.org/10.1039/d0ce01092h• Adjusting dye-functionalized linkers and defects196196. W. Schrimpf, J. Jiang, Z. Ji, P. Hirschle, D. C. Lamb, O. M. Yaghi, and S. Wuttke, Nat. Commun. 9, 1647 (2018). https://doi.org/10.1038/s41467-018-04050-w• Formation of a donor–acceptor energy transfer system with rigidification structure188188. R. Haldar, L. Heinke, C. Wöll, R. Haldar, L. Heinke, and C. Wöll, Adv. Mater. 32, 1905227 (2020). https://doi.org/10.1002/adma.201905227• Deprotonation-triggered Stokes shift190190. N. Zhao, F. Sun, S. Zhang, H. He, J. Liu, Q. Li, and G. Zhu, Inorg. Chem. 54, 65 (2015). https://doi.org/10.1021/ic501560z• Encapsulation of luminescent guest (e.g., perovskite QDs) species into MOF pores193,194193. X.-Y. Liu, W. P. Lustig, and J. Li, ACS Energy Lett. 5, 2671 (2020). https://doi.org/10.1021/acsenergylett.0c01148194. Y. Zhang, Y. He, Z. Tang, W. Yu, Z. Zhang, Z. Chen, L. Xiao, J. j. Shi, S. Wang, B. Qu, Y. Zhang, Y. He, Z. Tang, W. Yu, Z. Zhang, Z. Chen, L. Xiao, J.-J. Shi, S. Wang, and B. Qu, Small 18, 2107161 (2022). https://doi.org/10.1002/smll.202107161• Affected by the operational temperature197197. J. Dong, P. Shen, S. Ying, Z.-J. Li, Y. D. Yuan, Y. Wang, X. Zheng, S. B. Peh, H. Yuan, G. Liu, Y. Cheng, Y. Pan, L. Shi, J. Zhang, D. Yuan, B. Liu, Z. Zhao, B. Z. Tang, and D. Zhao, Chem. Mater. 32, 6706 (2020). https://doi.org/10.1021/acs.chemmater.0c02277• Hetero-ligand crystalline191191. J. Perego, C. X. Bezuidenhout, I. Villa, F. Cova, R. Crapanzano, I. Frank, F. Pagano, N. Kratochwill, E. Auffray, S. Bracco, A. Vedda, C. Dujardin, P. E. Sozzani, F. Meinardi, A. Comotti, and A. Monguzzi, Nat. Commun. 13, 3504 (2022). https://doi.org/10.1038/s41467-022-31163-0• Mixed linker strategy195195. S. Wu, D. Ren, K. Zhou, H.-L. Xia, X.-Y. Liu, X. Wang, and J. Li, J. Am. Chem. Soc. 143, 10547 (2021). https://doi.org/10.1021/jacs.1c04810Ln-based luminescent materials• Antenna effect: Incorporation of a chromophore with large absorption coefficient to efficiently harvest photons and transfer energy onto Ln3+ ions198198. G. Bao, S. Wen, G. Lin, J. Yuan, J. Lin, K.-L. Wong, J.-C. G. Bünzli, and D. Jin, Coord. Chem. Rev. 429, 213642 (2021). https://doi.org/10.1016/j.ccr.2020.213642• Optimizing chemical composition and structure178178. S. Wang, Z. Song, Y. Kong, and Q. Liu, J. Lumin. 212, 250 (2019). https://doi.org/10.1016/j.jlumin.2019.04.036• Optimizing the ligands coordinated to the Ln-ions to break the centrosymmetry and allow for less forbidden transition200200. N. B. D. Lima, S. M. C. Gonçalves, S. A. Júnior, and A. M. Simas, Sci. Rep. 3, 2395 (2013). https://doi.org/10.1038/srep02395• Adjusting the concentration of sensitizer and emitter202202. M. Wang, C. Hu, and Q. Su, Biosensors 12, 131 (2022). https://doi.org/10.3390/bios12020131• Adjusting the energy-transfer channel• Plasmonic enhancement199199. R. Marin, D. Jaque, and A. Benayas, Nanoscale Horiz. 6, 209 (2021). https://doi.org/10.1039/d0nh00627k• Antenna effect198198. G. Bao, S. Wen, G. Lin, J. Yuan, J. Lin, K.-L. Wong, J.-C. G. Bünzli, and D. Jin, Coord. Chem. Rev. 429, 213642 (2021). https://doi.org/10.1016/j.ccr.2020.213642• The PLQY in solution tends to be smaller than in solids• Inorganic NPs can increase the duration of Ln3+ emission due to lower frequency oscillations in the inorganic lattice201201. P. Manna, M. Bhar, and P. Mukherjee, J. Lumin. 235, 118052 (2021). https://doi.org/10.1016/j.jlumin.2021.118052• Coupling with semiconductor nanocrystals199199. R. Marin, D. Jaque, and A. Benayas, Nanoscale Horiz. 6, 209 (2021). https://doi.org/10.1039/d0nh00627k• Incorporation of Ln3+ in an appropriate inorganic nanoparticle to minimize the nonradiative decay rate201201. P. Manna, M. Bhar, and P. Mukherjee, J. Lumin. 235, 118052 (2021). https://doi.org/10.1016/j.jlumin.2021.118052• Affected by the operational temperature203203. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, New J. Chem. 35, 1177 (2011). https://doi.org/10.1039/c0nj01010cAlloyed semiconductor QDs (with core/shell structure)• Increasing the lateral dimension204204. G. Nagamine, B. G. Jeong, T. A. C. Ferreira, J. H. Chang, K. Park, D. C. Lee, W. K. Bae, and L. A. Padilha, ACS Photonics 7, 2252 (2020). https://doi.org/10.1021/acsphotonics.0c00812• Growing thick shell to form a type-II (or quasi-type-II) band structure207,208207. S. Sadeghi, H. Bahmani Jalali, R. Melikov, B. Ganesh Kumar, M. Mohammadi Aria, C. W. Ow-Yang, and S. Nizamoglu, ACS Appl. Mater. Interfaces 10, 12975 (2018). https://doi.org/10.1021/acsami.7b19144208. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, Nat. Photonics 8, 392 (2014). https://doi.org/10.1038/nphoton.2014.54• Formation of a donor–acceptor energy transfer system by embedding small-bandgap QDs with high PLQY into a matrix of larger-bandgap QDs with lower PLQY210210. N. J. L. K. Davis, J. R. Allardice, J. Xiao, A. Karani, T. C. Jellicoe, A. Rao, and N. C. Greenham, Mater. Horiz. 6, 137 (2019). https://doi.org/10.1039/c8mh01122b• Affected by the core/shell structures (e.g., core size, shell passivation), concentration of sensitizer and emitter, energy transfer channel and operational temperature202202. M. Wang, C. Hu, and Q. Su, Biosensors 12, 131 (2022). https://doi.org/10.3390/bios12020131• Grows tetrapod QDs205205. W. Xing, S. Zhang, R. An, W. Bi, C. Geng, and S. Xu, Nanoscale 13, 19474 (2021). https://doi.org/10.1039/d1nr04070g• Adjusting the geometry structure to introduce self-trapped excitons209209. Z. Wang, W. Yang, and Y. Wang, J. Phys. Chem. C 121, 20031 (2017). https://doi.org/10.1021/acs.jpcc.7b05643• Formation of coupled colloidal QD molecules206206. Y. E. Panfil, D. Shamalia, J. Cui, S. Koley, and U. Banin, J. Chem. Phys. 151, 224501 (2019). https://doi.org/10.1063/1.5128086

留言 (0)

沒有登入
gif