Theoretical considerations for a left atrial pump in heart failure with preserved ejection fraction

Benjamin EJ, Muntner P, Alonso A et al (2019) Heart Disease and Stroke Statistics-2019 Update: a report from the American Heart Association. Circulation 139:e56–e528

Article  PubMed  Google Scholar 

Loehr LR, Rosamond WD, Chang PP, Folsom AR, Chambless LE (2008) Heart failure incidence and survival (from the Atherosclerosis Risk in Communities study). Am J Cardiol 101:1016–1022

Article  PubMed  Google Scholar 

Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

Article  CAS  PubMed  Google Scholar 

Oktay AA, Rich JD, Shah SJ (2013) The emerging epidemic of heart failure with preserved ejection fraction. Curr Heart Fail Rep 10:401–410

Article  PubMed  Google Scholar 

Chang PP, Wruck LM, Shahar E et al (2018) Trends in hospitalizations and survival of acute decompensated heart failure in four us communities (2005–2014): ARIC Study Community Surveillance. Circulation 138:12–24

Article  PubMed  PubMed Central  Google Scholar 

Maurer MS, King DL, El-Khoury Rumbarger L, Packer M, Burkhoff D (2005) Left heart failure with a normal ejection fraction: identification of different pathophysiologic mechanisms. J Card Fail 11:177–187

Article  PubMed  Google Scholar 

Shah SJ, Kitzman DW, Borlaug BA et al (2016) Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134:73–90

Article  PubMed  PubMed Central  Google Scholar 

Haass M, Kitzman DW, Anand IS et al (2011) Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail 4:324–331

Article  PubMed  PubMed Central  Google Scholar 

Sabbah MS, Fayyaz AU, de Denus S et al (2020) Obese-inflammatory phenotypes in heart failure with preserved ejection fraction. Circ Heart Fail 13:e006414

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hedman ÅK, Hage C, Sharma A et al (2020) Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart 106:342

Article  PubMed  Google Scholar 

Silverman DN, Shah SJ (2019) Treatment of heart failure with preserved ejection fraction (HFpEF): the phenotype-guided approach. Curr Treat Options Cardiovasc Med 21:20

Article  PubMed  Google Scholar 

Abramov D, He KL, Wang J, Burkhoff D, Maurer MS (2011) The impact of extra cardiac comorbidities on pressure volume relations in heart failure and preserved ejection fraction. J Card Fail 17:547–555

Article  PubMed  PubMed Central  Google Scholar 

Santos AB, Kraigher-Krainer E, Gupta DK et al (2014) Impaired left atrial function in heart failure with preserved ejection fraction. Eur J Heart Fail 16:1096–1103

Article  CAS  PubMed  Google Scholar 

Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maurer MS, Kronzon I, Burkhoff D (2006) Ventricular pump function in heart failure with normal ejection fraction: insights from pressure-volume measurements. Prog Cardiovasc Dis 49:182–195

Article  PubMed  Google Scholar 

Westermann D, Kasner M, Steendijk P et al (2008) Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117:2051–2060

Article  PubMed  Google Scholar 

Borlaug BA, Jaber WA, Ommen SR, Lam CSP, Redfield MM, Nishimura RA (2011) Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction 97:964–969

Google Scholar 

Borlaug BA, Carter RE, Melenovsky V et al (2017) Percutaneous pericardial resection: a novel potential treatment for heart failure with preserved ejection fraction. Circ Heart Fail 10:e003612

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bursi F, Weston SA, Redfield MM et al (2006) Systolic and diastolic heart failure in the community. JAMA 296:2209–2216

Article  CAS  PubMed  Google Scholar 

Bhatia RS, Tu JV, Lee DS et al (2006) Outcome of heart failure with preserved ejection fraction in a population-based study 355:260–269

CAS  Google Scholar 

Miller LW, Pagani FD, Russell SD et al (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357:885–896

Article  CAS  PubMed  Google Scholar 

Slaughter MS, Pagani FD, McGee EC et al (2013) HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. J Heart Lung Transplant 32:675–683

Article  PubMed  Google Scholar 

Mehra MR, Uriel N, Naka Y et al (2019) A fully magnetically levitated left ventricular assist device — final report. 380:1618–1627

Rose EA, Gelijns AC, Moskowitz AJ et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345:1435–1443

Article  CAS  PubMed  Google Scholar 

Sridharan L, Wayda B, Truby LK et al (2018) Mechanical circulatory support device utilization and heart transplant waitlist outcomes in patients with restrictive and hypertrophic cardiomyopathy. Circ Heart Fail 11:e004665

Article  PubMed  PubMed Central  Google Scholar 

Burkhoff D, Maurer MS, Joseph SM et al (2015) Left atrial decompression pump for severe heart failure with preserved ejection fraction: theoretical and clinical considerations. JACC Heart Fail 3:275–282

Article  PubMed  Google Scholar 

Topilsky Y, Pereira NL, Shah DK et al (2011) Left ventricular assist device therapy in patients with restrictive and hypertrophic cardiomyopathy. Circ Heart Fail 4:266–275

Article  PubMed  Google Scholar 

Muthiah K, Phan J, Robson D et al (2013) Centrifugal continuous-flow left ventricular assist device in patients with hypertrophic cardiomyopathy: a case series. Asaio j 59:183–187

Article  PubMed  Google Scholar 

Grupper A, Park SJ, Pereira NL et al (2015) Role of ventricular assist therapy for patients with heart failure and restrictive physiology: improving outcomes for a lethal disease. J Heart Lung Transplant 34:1042–1049

Article  PubMed  Google Scholar 

Patel SR, Saeed O, Naftel D et al (2017) Outcomes of restrictive and hypertrophic cardiomyopathies after LVAD: an INTERMACS analysis. J Cardiac Fail 23:859–867

Article  Google Scholar 

Michelis KC, Zhong L, Tang WHW et al (2020) Durable mechanical circulatory support in patients with amyloid cardiomyopathy: insights from INTERMACS. Circ Heart Fail 13:e007931

Article  CAS  PubMed  Google Scholar 

Milano CA, Rogers JG, Tatooles AJ et al (2018) HVAD: The ENDURANCE Supplemental Trial. JACC Heart Fail 6:792–802

Article  PubMed  Google Scholar 

Morley D, Litwak K, Ferber P et al (2007) Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data. J Thorac Cardiovasc Surg 133:21–28

Article  PubMed  Google Scholar 

Meyns B, Klotz S, Simon A et al (2009) Proof of concept: hemodynamic response to long-term partial ventricular support with the synergy pocket micro-pump. J Am Coll Cardiol 54:79–86

Article  PubMed  Google Scholar 

Meyns BP, Simon A, Klotz S et al (2011) Clinical benefits of partial circulatory support in New York Heart Association class IIIB and early class IV patients. Eur J Cardiothorac Surg 39:693–698

Article  PubMed  Google Scholar 

Fukamachi K, Horvath DJ, Karimov JH et al (2020) Left atrial assist device to treat patients with heart failure with preserved ejection fraction: initial in vitro study. J Thorac Cardiovasc Surg

Burkhoff D (2020) Commentary: Pumps for pEF. J Thorac Cardiovasc Surg

Abraham WT, Stevenson LW, Bourge RC, Lindenfeld JA, Bauman JG, Adamson PB (2016) Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet 387:453–461

Article  PubMed  Google Scholar 

Hasenfuß G, Hayward C, Burkhoff D et al (2016) A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet 387:1298–1304

Article  PubMed  Google Scholar 

Kaye DM, Hasenfuß G, Neuzil P et al (2016) One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction. Circ Heart Fail 9:e003662

Article  PubMed  PubMed Central  Google Scholar 

Feldman T, Mauri L, Kahwash R et al (2018) Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure]): a phase 2, randomized, sham-controlled trial. Circulation 137:364–375

Article  PubMed  Google Scholar 

Rodés-Cabau J, Bernier M, Amat-Santos IJ et al (2018) Interatrial shunting for heart failure: early and late results from the first-in-human experience with the V-Wave System. JACC: Cardiovascular Interventions. 11:2300–2310

留言 (0)

沒有登入
gif