Treatment of cardiac fibrosis: from neuro-hormonal inhibitors to CAR-T cell therapy

Schellings MW, Pinto YM, Heymans S (2004) Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res 64(1):24–31

Article  CAS  PubMed  Google Scholar 

Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao M, Wang L, Wang M et al (2022) Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 7(1):206

Article  PubMed  PubMed Central  Google Scholar 

Kato K, Logsdon NJ, Shin YJ et al (2020) Impaired myofibroblast dedifferentiation contributes to nonresolving fibrosis in aging. Am J Respir Cell Mol Biol 62(5):633–644

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giannandrea M, Parks WC (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7(2):193–203

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frangogiannis NG (2021) Cardiac fibrosis. Cardiovasc Res 117(6):1450–1488

Article  CAS  PubMed  Google Scholar 

Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961

Article  CAS  PubMed  Google Scholar 

Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction–from repair and remodeling to regeneration. Cell Tissue Res 365(3):563–581

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nattel S, Shiroshita-Takeshita A, Cardin S et al (2005) Mechanisms of atrial remodeling and clinical relevance. Curr Opin Cardiol 20(1):21–25

PubMed  Google Scholar 

Nguyen MN, Kiriazis H, Gao XM et al (2017) Cardiac fibrosis and arrhythmogenesis. Compr Physiol 7(3):1009–1049

Article  PubMed  Google Scholar 

Spach MS, Dolber PC, Heidlage JF (1989) Interaction of inhomogeneities of repolarization with anisotropic propagation in dog atria. A mechanism for both preventing and initiating reentry. Circul Res 65(6):1612–31

Vergaro G, Aimo A, Rapezzi C et al (2022) Atrial amyloidosis: mechanisms and clinical manifestations. Eur J Heart Fail Aug 3

Pucci A, Aimo A, Musetti V et al (2021) Amyloid deposits and fibrosis on left ventricular endomyocardial biopsy correlate with extracellular volume in cardiac amyloidosis. J Am Heart Assoc 10(20):e020358

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Boer RA, De Keulenaer G, Bauersachs J et al (2019) Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail 21(3):272–285

Hinderer S, Schenke-Layland K (2019) Cardiac fibrosis – a short review of causes and therapeutic strategies. Adv Drug Deliv Rev 146:77–82

Article  CAS  PubMed  Google Scholar 

Iles L, Pfluger H, Phrommintikul A et al (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52(19):1574–1580

Article  PubMed  Google Scholar 

Ding Y, Wang Y, Zhang W et al (2020) Roles of biomarkers in myocardial fibrosis. Aging Dis 11(5):1157–1174

Article  PubMed  PubMed Central  Google Scholar 

Lopez B, Gonzalez A, Ravassa S et al (2015) Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J Am Coll Cardiol 65(22):2449–2456

Article  CAS  PubMed  Google Scholar 

Oakes RS, Badger TJ, Kholmovski EG et al (2009) Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119(13):1758–1767

Article  PubMed  PubMed Central  Google Scholar 

O’Hanlon R, Grasso A, Roughton M et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):867–874

Article  PubMed  Google Scholar 

Zegard A, Okafor O, de Bono J et al (2021) Myocardial fibrosis as a predictor of sudden death in patients with coronary artery disease. J Am Coll Cardiol 77(1):29–41

Article  PubMed  Google Scholar 

Friedman SL (2022) Fighting cardiac fibrosis with CAR T cells. N Engl J Med 386(16):1576–1578

Article  PubMed  Google Scholar 

Lewis GA, Dodd S, Clayton D et al (2021) Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat Med 27(8):1477–1482

Article  CAS  PubMed  Google Scholar 

Rurik JG, Tombacz I, Yadegari A et al (2022) CAR T cells produced in vivo to treat cardiac injury. Science 375(6576):91–96

Article  CAS  PubMed  Google Scholar 

Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71(4):549–574

Article  CAS  PubMed  Google Scholar 

Schnee JM, Hsueh WA (2000) Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res 46(2):264–268

Article  CAS  PubMed  Google Scholar 

Brilla CG, Funck RC, Rupp H (2000) Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102(12):1388–1393

Article  CAS  PubMed  Google Scholar 

Lopez B, Querejeta R, Varo N et al (2001) Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 104(3):286–291

Article  CAS  PubMed  Google Scholar 

Diez J, Querejeta R, Lopez B et al (2002) Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105(21):2512–2517

Article  CAS  PubMed  Google Scholar 

Shimada YJ, Passeri JJ, Baggish AL et al (2013) Effects of losartan on left ventricular hypertrophy and fibrosis in patients with nonobstructive hypertrophic cardiomyopathy. JACC Heart failure 1(6):480–487

Article  PubMed  PubMed Central  Google Scholar 

Brilla CG, Zhou G, Matsubara L et al (1994) Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 26(7):809–820

Article  CAS  PubMed  Google Scholar 

Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H et al (2011) A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc Imaging 4(12):1239–1249

Article  PubMed  Google Scholar 

Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H et al (2013) Fibrosis and cardiac function in obesity: a randomised controlled trial of aldosterone blockade. Heart (British Cardiac Society) 99(5):320–326

CAS  PubMed  Google Scholar 

Mak GJ, Ledwidge MT, Watson CJ et al (2009) Natural history of markers of collagen turnover in patients with early diastolic dysfunction and impact of eplerenone. J Am Coll Cardiol 54(18):1674–1682

Article  CAS  PubMed  Google Scholar 

Deswal A, Richardson P, Bozkurt B et al (2011) Results of the Randomized Aldosterone Antagonism in Heart Failure with Preserved Ejection Fraction trial (RAAM-PEF). J Cardiac Fail 17(8):634–642

Article  Google Scholar 

Zannad F, Alla F, Dousset B et al (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators Circulation 102(22):2700–2706

Article  CAS  PubMed  Google Scholar 

Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. New England J Med 2;341(10):709–17

Iraqi W, Rossignol P, Angioi M et al (2009) Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation 119(18):2471–2479

Article  CAS  PubMed  Google Scholar 

Ravassa S, Trippel T, Bach D et al (2018) Biomarker-based phenotyping of myocardial fibrosis identifies patients with heart failure with preserved ejection fraction resistant to the beneficial effects of spironolactone: results from the Aldo-DHF trial. Eur J Heart Fail 20(9):1290–1299

Article  CAS  PubMed  Google Scholar 

Hofmann F (2018) A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology. Basic Res Cardiol 113(4):31

Article  PubMed  Google Scholar 

Matei AE, Beyer C, Gyorfi AH et al (2018) Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Ann Rheum Dis 77(3):459

Article  CAS  PubMed 

留言 (0)

沒有登入
gif