Elevated atmospheric CO2 concentrations caused a shift of the metabolically active microbiome in vineyard soil

Wohlfahrt Y, Smith JP, Tittmann S, Honermeier B, Stoll M. Primary productivity and physiological responses of Vitis vinifera L. cvs. under Free Air Carbon dioxide Enrichment (FACE). Eur J Agron. 2018;101 February:149–62. https://doi.org/10.1016/j.eja.2018.09.005.

da Silva JR, Patterson AE, Rodrigues WP, Campostrini E, Griffin KL. Photosynthetic acclimation to elevated CO2 combined with partial rootzone drying results in improved water use efficiency, drought tolerance and leaf carbon balance of grapevines (Vitis labrusca). Environ Exp Bot. 2017;134:82–95.

Edwards EJ, Unwin D, Kilmister R, Treeby M, Ollat N. Multi-seasonal effects of warming and elevated CO2 on the physiology, growth and production of mature, field grown, Shiraz grapevines. J Int des Sci la Vigne du Vin. 2017;51:127–32.

CAS  Google Scholar 

Kizildeniz T, Pascual I, Irigoyen JJ, Morales F. Using fruit-bearing cuttings of grapevine and temperature gradient greenhouses to evaluate effects of climate change (elevated CO2 and temperature, and water deficit) on the cv. red and white Tempranillo. Yield and must quality in three consecutive growin. Agric Water Manag. 2018;202:299–310. https://doi.org/10.1016/j.agwat.2017.12.001.

Wohlfahrt Y, Tittmann S, Schmidt D, Rauhut D, Honer B, Stoll M. The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and cabernet sauvignon. Appl Sci. 2020;10:2486. https://doi.org/10.3390/app10072486.

Reineke A, Selim M. Elevated atmospheric CO2 concentrations alter grapevine (Vitis vinifera) systemic transcriptional response to European grapevine moth (Lobesia botrana) herbivory. Sci Rep. 2019;9:1–12. https://doi.org/10.1038/s41598-019-39979-5.

Schulze-Sylvester M, Reineke A. Elevated CO2 levels impact fitness traits of vine mealybug Planococcus ficus signoret, but not its parasitoid Leptomastix dactylopii howard. Agronomy. 2019;9:326.

Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S. The Soil microbiome influences grapevine-associated microbiota. MBio. 2015;6:e02527–e2614.

Wei YJ, Wu Y, Yan YZ, Zou W, Xue J, Ma WR, et al. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE. 2018;13:e0193097.

Deyett E, Rolshausen PE. Endophytic microbial assemblage in grapevine. FEMS Microbiol Ecol. 2020;96:1–11.

Article  Google Scholar 

Nerva L, Zanzotto A, Gardiman M, Gaiotti F, Chitarra W. Soil microbiome analysis in an ESCA diseased vineyard. Soil Biol Biochem. 2019;135 January:60–70. https://doi.org/10.1016/j.soilbio.2019.04.014.

Marasco R, Rolli E, Fusi M, Michoud G, Daffonchio D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome. 2018;6:1–17.

Article  Google Scholar 

Berlanas C, Berbegal M, Elena G, Laidani M, Cibriain JF, Sagües A, et al. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front Microbiol. 2019;10:1142.

Article  PubMed  PubMed Central  Google Scholar 

Liu D, Howell K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ Microbiol. 2020;n/a n/a. https://doi.org/10.1111/1462-2920.15172.

Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett. 2012;15:1042–9.

Article  PubMed  Google Scholar 

Jia X, Wang W, Chen Z, He Y, Liu J. Concentrations of secondary metabolites in tissues and root exudates of wheat seedlings changed under elevated atmospheric CO2 and cadmium-contaminated soils. Environ Exp Bot. 2014;107:134–43. https://doi.org/10.1016/j.envexpbot.2014.06.005.

Article  CAS  Google Scholar 

Bei Q, Moser G, Wu X, Müller C, Liesack W. Metatranscriptomics reveals climate change effects on the rhizosphere microbiomes in European grassland. Soil Biol Biochem. 2019;138 July:1–10. https://doi.org/10.1016/j.soilbio.2019.107604.

Yu Z, Li Y, Wang G, Liu J, Liu J, Liu X, et al. Effectiveness of elevated CO2 mediating bacterial communities in the soybean rhizosphere depends on genotypes. Agric Ecosyst Environ. 2016;231:229–32.

Article  CAS  Google Scholar 

Montealegre CM, Van Kessel C, Blumenthal JM, Hur HG, Hartwig Ua, Sadowsky MJ. Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Glob Chang Biol. 2000;6:475–82.

Article  Google Scholar 

Lee SH, Kang H. Elevated CO2 causes a change in microbial communities of rhizosphere and bulk soil of salt marsh system. Appl Soil Ecol. 2016;108:307–14. https://doi.org/10.1016/j.apsoil.2016.09.009.

Article  Google Scholar 

Song N, Zhang X, Wang F, Zhang C, Tang S. Elevated CO2 increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs. J Environ Radioact. 2012;112:29–37. https://doi.org/10.1016/j.jenvrad.2012.03.002.

Müller C, Rütting T, Abbasi MK, Laughlin RJ, Kammann C, Clough TJ, et al. Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biol Biochem. 2009;41:1996–2001.

Article  Google Scholar 

Kizildeniz T, Irigoyen JJ, Pascual I, Morales F. Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015). Agric Water Manag. 2018;202 February:220–30. https://doi.org/10.1016/j.agwat.2018.02.006.

Wohlfahrt Y, Patz C, Schmidt D, Rauhut D, Honermeier B, Stoll M. Responses on must and wine composition of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon under a Free Air CO2 Enrichment (FACE). Foods. 2021;10.

Bokulich NA, Collins T, Masarweh C, Allen G, Heymann H, Ebeler SE, et al. Fermentation behavior suggest microbial contribution to regional. MBio. 2016;7:e00631–e716.

Houseley J, Tollervey D. Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. PLoS One. 2010;5:e12271. https://doi.org/10.1371/journal.pone.0012271.

Cocquet J, Chong A, Zhang G, Veitia RA. Reverse transcriptase template switching and false alternative transcripts. Genomics. 2006;88:127–31.

Article  CAS  PubMed  Google Scholar 

Laroche O, Wood SA, Tremblay LA, Lear G, Ellis JI, Pochon X. Metabarcoding monitoring analysis: The pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. PeerJ. 2017;5:e3347. https://doi.org/10.7717/peerj.3347.

Arezi B, Hogrefe HH. Escherichia coli DNA polymerase III ε subunit increases Moloney murine leukemia virus reverse transcriptase fidelity and accuracy of RT-PCR procedures. Anal Biochem. 2007;360:84–91.

Cheng L, Booker FL, Burkey KO, Tu C, da Shew HD, Rufty TW, et al. Soil microbial responses to elevated CO2 and O3 in a nitrogen-aggrading agroecosystem. PLoS ONE. 2011;6:e21377.

Wang P, Marsh EL, Ainsworth EA, Leakey ADB, Sheflin AM, Schachtman DP. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/s41598-017-14936-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simonin M, Le Roux X, Poly F, Lerondelle C, Hungate BA, Nunan N, et al. Coupling between and among ammonia oxidizers and nitrite oxidizers in grassland mesocosms Submitted to elevated CO2 and nitrogen supply. Microb Ecol. 2015;70:809–18.

Article  CAS  PubMed  Google Scholar 

Rosado-Porto D, Ratering S, Cardinale M, Maisinger C, Moser G, Deppe M, et al. Elevated atmospheric CO2 modifies mostly the metabolic active rhizosphere soil microbiome in the Giessen FACE Experiment. Microb Ecol. 2021. https://doi.org/10.1007/s00248-021-01791-y.

Walker TS, Bais HP, Grotewold E, Vivanco JM. Root exudation and rhizosphere biology root exudation and rhizosphere biology. Plant Physiol. 2003;132:44–51.

Li K, Guo XW, Xie HG, Guo Y, Li C. Influence of root exudates and residues on soil microecological environment. Pakistan J Bot. 2013;45:1773–9.

Google Scholar 

Lipson DA, Wilson RF, Oechel WC. Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem. Appl Environ Microbiol. 2005;71:8573–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carney KM, Hungate BA, Drake BG, Megonigal JP. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci U S A. 2007;104:4990–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu M, He Z, Deng Y, Wu L, Van Nostrand JD, Hobbie SE, et al. Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiol. 2013;13:124. https://doi.org/10.1186/1471-2180-13-124.

Xiong J, He Z, Shi S, Kent A, Deng Y, Wu L, et al. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Sci Rep. 2015;5:1–9.

Article  CAS  Google Scholar 

He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett. 2010;13:564–75.

Article  PubMed  Google Scholar 

He Z, Xiong J, Kent AD, Deng Y, Xue K, Wang G, et al. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. ISME J. 2014;8:714–26.

Article  CAS  PubMed  Google Scholar 

Wang P, Marsh EL, Ainsworth EA, Leakey ADB, Sheflin AM, Schachtman DP, et al. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3. Sci Rep. 2011;7:1–8. https://doi.org/10.1371/journal.pone.0021377.

Article  CAS  Google Scholar 

Pujol Pereira EI, Chung H, Scow K, Six J. Microbial communities and soil structure are affected by reduced precipitation, but not by elevated carbon dioxide. Soil Sci Soc Am J. 2013;77:482. https://doi.org/10.2136/sssaj2012.0218.

Brenzinger K, Kujala K, Horn MA, Moser G, Guillet C, Kammann C, et al. Soil conditions rather than long-term exposure to elevated CO2 affect soil microbial communities associated with N-cycling. Front Microbiol. 2017;8:1–14. https://doi.org/10.3389/fmicb.2017.01976.

Article  Google Scholar 

Fontaine S, Bardoux G, Abbadie L, Mariotti A. Carbon input to soil may decrease soil carbon content. Ecol Lett. 2004;7:314–20.

Article  Google Scholar 

Blagodatskaya E, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol Fertil Soils. 2008;45:115–31.

Article  Google Scholar 

Derrien D, Plain C, Courty PE, Gelhaye L, Moerdijk-Poortvliet TCW, Thomas F, et al. Does the addition of labile substrate destabilise old soil organic matter? Soil Biol Biochem. 2014;76:149–60. https://doi.org/10.1016/j.soilbio.2014.04.030.

Article  CAS  Google Scholar 

Vestergard M, Reinsch S, Bengtson P, Ambus P, Christensen S. Enhanced priming of old, not new soil carbon at elevated atmospheric CO2. Soil Biol Biochem. 2016;100:140–8.

Article  Google Scholar 

Liu XJA, Sun J, Mau RL, Finley BK, Compson ZG, van Gestel N, et al. Labile carbon input determines the direction and magnitude of the priming effect. Appl Soil Ecol. 2017;109:7–13. https://doi.org/10.1016/j.apsoil.2016.10.002.

Article  Google Scholar 

Bleyen N, Hendrix K, Moors H, Durce D, Vasile M, Valcke E. Biodegradability of dissolved organic matter in Boom Clay pore water under nitrate-reducing conditions: Effect of additional C and P sources. Appl Geochemistry. 2017;2018(92):45–58. https://doi.org/10.1016/j.apgeochem.2018.02.005.

Article  CAS  Google Scholar 

Gtari M, Ghodhbane-Gtari F, Nouioui I, Beauchemin N, Tisa LS. Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch Microbiol. 2012;194:3–11.

Article  CAS  PubMed  Google Scholar 

Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, De Lajudie P. Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol. 2006;51:375–93.

von der Weid I, Duarte GF, van Elsas JD, Seldin L. Paeninacillus brasilensis sp nov a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol. 2002;52:2147–53.

Padda KP, Puri A, Chanway CP. Plant growth promotion and nitrogen fixation in canola (Brassica napus) by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study. Botany. 2016;94:1209–17. https://doi.org/10.1139/cjb-2016-0075.

Fernandes G de C, Trarbach LJ, De Campos SB, Beneduzi A, Passaglia LMP. Alternative nitrogenase and pseudogenes: Unique features of the Paenibacillus riograndensis nitrogen fixation system. Res Microbiol. 2014;165:571–80. https://doi.org/10.1016/j.resmic.2014.06.002.

Rosado AS, Duarte GF, Seldin L, Van Elsas JD. Genetic Diversity of nifH gene sequences in Paenibacillus azotofixans. Appl Environ Microbiol. 1998;64:2770–9.

Li Y, Li Q, Chen S. Diazotroph Paenibacillus triticisoli bj-18 drives the variation in bacterial, diazotrophic and fungal communities in the rhizosphere and root/shoot endosphere of maize. Int J Mol Sci. 2021;22:1–25.

Ando S, Goto M, Hayashi H, Yoneyama T, Meunchang S, Thongra-ar P, et al. Detection of nifH Sequences in Sugarcane (Saccharum officinarum L.) And Pineapple (Ananas comosus [L.] Merr.). Soil Sci Plant Nutr. 2005;51:303–8.

Ormeño-Orrillo E, Martínez-Romero E. A genomotaxonomy view of the Bradyrhizobium genus. Front Microbiol. 2019;10:1–13.

Hennecke H. Nitrogen fixation genes involved in the Bradyrhizobium juponicum- soybean symbiosis. FEBS Lett. 1990;268:422–6.

Ishii S, Ashida N, Ohno H, Segawa T, Yabe S, Otsuka S, et al. Noviherbaspirillum denitrificans sp. nov. a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov. a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclass. Int J Syst Evol Microbiol. 2017;67:1841–8.

Zhao X, Li X, Qi N, Gan M, Pan Y, Han T, et al. Massilia neuiana sp. nov. isolated from wet soil. Int J Syst Evol Microbiol. 2017;67:4943–7.

Xu Z, Dai X, Chai X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci Total Environ. 2018;634:195–204. https://doi.org/10.1016/j.scitotenv.2018.03.348.

Article  CAS  PubMed  Google Scholar 

Zhou S, Zhang Y, Huang T, Liu Y, Fang K, Zhang C. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir. Sci Total Environ. 2019;651:998–1010. https://doi.org/10.1016/j.scitotenv.2018.09.160.

Article  CAS  PubMed  Google Scholar 

Zhou S, Zeng X, Xu Z, Bai Z, Xu S, Jiang C, et al. Paenibacillus polymyxa biofertilizer application in a tea plantation reduces soil N2O by changing denitrifier communities. Can J Microbiol. 2020;66:214–27.

Moser G, Gorenflo A, Brenzinger K, Keidel L, Braker G, Marhan S, et al. Explaining the doubling of N2O emissions under elevated CO2 in the Giessen FACE via in-field 15N tracing. Glob Chang Biol. 2018;24:3897–910.

留言 (0)

沒有登入
gif