Resilience and stability of the CF- intestinal and respiratory microbiome during nutritional and exercise intervention

Elborn JS. Cystic fibrosis. Lancet. 2016;388(10059):2519–31.

Article  CAS  PubMed  Google Scholar 

Rogers G, Huang YJ. Chronic suppurative lung disease: cystic fibrosis and non-cystic fibrosis bronchiectasis. In: Cox MJ, Ege MJ, von Mutius E, eds. The Lung Microbiome (ERS Monograph). Sheffield, European Respiratory Society, 2019; pp. 158–172 [https://doi.org/10.1183/2312508X.10016218].

Kristensen M, Prevaes SMPJ, Kalkman G, Tramper-Stranders GA, Hasrat R, de Winter-de Groot KM, et al. Development of the gut microbiota in early life: The impact of cystic fibrosis and antibiotic treatment. J Cyst Fibros. 2020;19(4):553–61.

Article  CAS  PubMed  Google Scholar 

Hahn A, Burrell A, Ansusinha E, Peng D, Chaney H, Sami I, et al. Airway microbial diversity is decreased in young children with cystic fibrosis compared to healthy controls but improved with CFTR modulation. Heliyon. 2020;6(6):e04104. https://doi.org/10.1016/j.heliyon.2020.e04104.

Article  PubMed  PubMed Central  Google Scholar 

Muhlebach MS, Zorn BT, Esther CR, Hatch JE, Murray CP, Turkovic L, et al. Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children. PLoS Pathog. 2018;14(1):1–20.

Article  Google Scholar 

Nielsen S, Needham B, Leach ST, Day AS, Jaffe A, Thomas T, et al. Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis. 2016;6(1):24857. Available from: www.nature.com/scientificreports.[cited 2018 Jul 24]

Antosca KM, Chernikova DA, Price CE, Ruoff KL, Li K, Guill MF, et al. Altered stool microbiota of infants with cystic fibrosis shows a reduction in genera associated with immune programming from birth. J Bacteriol. 2019;201(16):e00274-19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vernocchi P, del Chierico F, Russo A, Majo F, Rossitto M, Valerio M, et al. Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype. 2018. https://doi.org/10.1371/journal.pone.0208171

Thavamani A, Salem I, Sferra TJ, Sankararaman S. Impact of altered gut microbiota and its metabolites in cystic fibrosis. Metabolites. 2021;11(2):1–22.

Article  Google Scholar 

Madan JC. Neonatal gastrointestinal and respiratory Microbiome in cystic fibrosis: potential interactions and implications for systemic health. Clin Ther. 2016;38(4):740–6. https://doi.org/10.1016/j.clinthera.2016.02.008.

Article  PubMed  PubMed Central  Google Scholar 

Cuthbertson L, Walker AW, Oliver AE, Rogers GB, Rivett DW, Hampton TH, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020;8(1):1–13.

Article  Google Scholar 

Héry-Arnaud G, Boutin S, Cuthbertson L, Elborn SJ, Tunney MM. The lung and gut microbiome: what has to be taken into consideration for cystic fibrosis? J Cyst Fibros. 2019;18(1):13–21. https://doi.org/10.1016/j.jcf.2018.11.003.

Article  PubMed  Google Scholar 

Price CE, O’Toole GA. The gut-lung axis in cystic Fibrosis. J Bacteriol Am Soc Microbiol. 2021;203:e0031121.

Google Scholar 

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (1979). 2011/09/03. 2011;334(6052):105–8. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368382/pdf/nihms378475.pdf

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.

Article  CAS  PubMed  Google Scholar 

Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, et al. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021;184(16):4137-4153.e14. https://doi.org/10.1016/j.cell.2021.06.019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

di Nardo G, Oliva S, Menichella A, Pistelli R, de Biase RV, Patriarchi F, et al. Lactobacillus reuteri ATCC55730 in cystic fibrosis. J Pediatr Gastroenterol Nutr. 2014;58(1):81–6.

Article  PubMed  Google Scholar 

Bruzzese E, Callegari ML, Raia V, Viscovo S, Scotto R, Ferrari S, et al. Disrupted Intestinal Microbiota and Intestinal Inflammation in Children with Cystic Fibrosis and Its Restoration with Lactobacillus GG: A Randomised Clinical Trial. Available from: www.plosone.org

Anderson JL, Miles C, Tierney AC. Effect of probiotics on respiratory, gastrointestinal and nutritional outcomes in patients with cystic fibrosis: A systematic review. J Cyst Fibros. 2017;16(2):186–97. https://doi.org/10.1016/j.jcf.2016.09.004.

Article  CAS  PubMed  Google Scholar 

Clauss M, Gérard P, Mosca A, Leclerc M. Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Front Nutr. 2021;8:637010. Available from: www.frontiersin.org

Article  PubMed  PubMed Central  Google Scholar 

Marttinen M, Ala-Jaakkola R, Laitila A, Lehtinen MJ. Gut microbiota, probiotics and physical performance in athletes and physically active individuals. Nutrients. 2020;12(10):1–39.

Article  Google Scholar 

Hillen B, Simon P, Schlotter S, Nitsche O, Bähner V, Poplawska K, et al. Feasibility and implementation of a personalized, web-based exercise intervention for people with cystic fibrosis for 1 year. BMC Sports Sci Med Rehabil. 2021;13(1):1–11. https://doi.org/10.1186/s13102-021-00323-y.

Article  Google Scholar 

Turck D, Braegger CP, Colombo C, Declercq D, Morton A, Pancheva R, et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin Nutr. 2016;35(3):557–77. https://doi.org/10.1016/j.clnu.2016.03.004.

Article  PubMed  Google Scholar 

Frey DL, Boutin S, Dittrich SA, Graeber SY, Stahl M, Wege S, et al. Relationship between airway dysbiosis, inflammation and lung function in adults with cystic fibrosis. J Cyst Fibros. 2021;20(5):754–60.

Article  CAS  PubMed  Google Scholar 

Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15(10):630–8. https://doi.org/10.1038/nrmicro.2017.58.

Article  CAS  PubMed  Google Scholar 

Motiani KK, Collado MC, Eskelinen JJ, Virtanen KA, Löyttyniemi E, Salminen S, et al. Exercise training modulates gut microbiota profile and improves endotoxemia. Med Sci Sports Exerc. 2020;52(1):94–104.

Article  PubMed  Google Scholar 

Kern T, Blond MB, Hansen TH, Rosenkilde M, Quist JS, Gram AS, et al. Structured exercise alters the gut microbiota in humans with overweight and obesity—A randomized controlled trial. Int J Obes. 2020;44(1):125–35.

Article  Google Scholar 

Müller MJ, Braun W, Pourhassan M, Geisler C, Bosy-Westphal A. Application of standards and models in body composition analysis. Proc Nutr Soc. 2016;75(2):181–7.

Article  PubMed  Google Scholar 

Moitinho-Silva L, Wegener M, May S, Schrinner F, Akhtar A, Boysen TJ, et al. Short-term physical exercise impacts on the human holobiont obtained by a randomised intervention study. BMC Microbiol. 2021;21(1):1–14.

Article  Google Scholar 

Wang R, Cai Y, Li J, Yau SY, Lu W, Stubbs B, et al. Effects of aerobic exercise on gut microbiota in adolescents with subthreshold mood syndromes and healthy adolescents: A 12-week, randomized controlled trial. J Affect Disord. 2021;293:363–72.

Article  PubMed  Google Scholar 

Lucas SK, Feddema E, Boyer HC, Hunter RC. Diversity of cystic fibrosis chronic rhinosinusitis microbiota correlates with different pathogen dominance. J Cyst Fibros. 2021;20(4):678–81. https://doi.org/10.1016/j.jcf.2021.03.022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Losada PM, Chouvarine P, Dorda M, Hedtfeld S, Mielke S, Schulz A, et al. The cystic fibrosis lower airways microbial metagenome. Available from: http://ow.ly/ZiqUE

Cuthbertson L, Rogers GB, Walker AW, Oliver A, Green LE, Daniels TWV, et al. Respiratory microbiota resistance and resilience to pulmonary exacerbation and subsequent antimicrobial intervention. ISME J. 2016;10(5):1081–91. https://doi.org/10.1038/ismej.2015.198.

Article  CAS  PubMed  Google Scholar 

Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, et al. The Adult Cystic Fibrosis Airway Microbiota Is Stable over Time and Infection Type, and Highly Resilient to Antibiotic Treatment of Exacerbations. PLoS One. 2012;7(9):e45001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nelson MT, Wolter DJ, Weiss EJ, Vo AT. Maintenance tobramycin primarily affects untargeted bacteria in the CF sputum microbiome. Available from: http://thorax.bmj.com/

Bevivino A, Bacci G, Drevinek P, Nelson MT, Hoffman L, Mengoni A. Deciphering the Ecology of Cystic Fibrosis Bacterial Communities: Towards Systems-Level Integration. Trends Mol Med. 2019;25(12):1110–22.

Article  PubMed  Google Scholar 

Forslund SK, Chakaroun R, Zimmermann-Kogadeeva M, Markó L, Aron-Wisnewsky J, Nielsen T, et al. Combinatorial, additive and dose-dependent drug–microbiome associations. Nature. 2021;600(7889):500–5.

Article  CAS  PubMed  Google Scholar 

Burke DG, Fouhy F, Harrison MJ, Rea MC, Cotter PD, O’Sullivan O, et al. The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol. 2017;17(1):1–11.

Google Scholar 

Marsh R, Gavillet H, Hanson L, Ng C, Mitchell-Whyte M, Major G, et al. Intestinal function and transit associate with gut microbiota dysbiosis in cystic fibrosis. J Cyst Fibros. 2021;(xxxx). https://doi.org/10.1016/j.jcf.2021.11.014

Maldonado-Gómez MX, Martínez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, et al. Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome. Cell Host Microbe. 2016;20:515–26.

Article  PubMed  Google Scholar 

Charatsi AM, Dusser P, Freund R, Maruani G, Rossin H, Boulier A, et al. Bioelectrical impedance in young patients with cystic fibrosis: Validation of a specific equation and clinical relevance. J Cyst Fibros. 2016;15(6):825–33.

Article  CAS  PubMed  Google Scholar 

Knoll RL, Forslund K, Kultima JRJR, Meyer CU, Kullmer U, Sunagawa S, et al. Gut microbiota differs between children with Inflammatory Bowel Disease and healthy siblings in taxonomic and functional composition: a metagenomic analysis. Am J Physiol Gastrointest Liver Physiol. 2017;312(4):G327–39. Available from: http://ajpgi.physiology.org/lookup/doi/https://doi.org/10.1152/ajpgi.00293.2016

Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21. https://doi.org/10.1038/nbt.2676.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birkner T. metadeconfoundR. 2021. Available from: https://github.com/TillBirkner/metadeconfoundR.

Google Scholar 

留言 (0)

沒有登入
gif