Chromosome-level genome assembly and population genomics of Mongolian racerunner (Eremias argus) provide insights into high-altitude adaptation in lizards

Okuzaki Y, Sota T. Factors related to altitudinal body size variation in the earthworm-eating ground beetle carabus japonicus. Zoolog Sci. 2017;34(3):229–34.

Article  PubMed  Google Scholar 

Tufts DM, Revsbech IG, Cheviron ZA, Weber RE, Fago A, Storz JF. Phenotypic plasticity in blood-oxygen transport in highland and lowland deer mice. J Exp Biol. 2013;216(Pt 7):1167–73.

CAS  PubMed  PubMed Central  Google Scholar 

Naeije R. Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis. 2010;52(6):456–66.

Article  PubMed  Google Scholar 

Witt KE, Huerta-Sanchez E. Convergent evolution in human and domesticate adaptation to high-altitude environments. Philos Trans Royal Soc B Biol Sci. 2019;374(1777):20180235.

Article  CAS  Google Scholar 

Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu, Basang, et al. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol. 2011;28(2):1075–81.

Article  CAS  PubMed  Google Scholar 

Xu S, Li S, Yang Y, Tan J, Lou H, Jin W, Yang L, Pan X, Wang J, Shen Y, et al. A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol Biol Evol. 2011;28(2):1003–11.

Article  PubMed  Google Scholar 

Hendrickson SL. A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the paramo. BMC Evol Biol. 2013;13:273.

Article  PubMed  PubMed Central  Google Scholar 

Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung CK, Chen L, Ma J, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 2013;45(12):1431–8.

Article  CAS  PubMed  Google Scholar 

Gou X, Wang Z, Li N, Qiu F, Xu Z, Yan D, Yang S, Jia J, Kong X, Wei Z, et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 2014;24(8):1308–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang MS, Li Y, Peng MS, Zhong L, Wang ZJ, Li QY, Tu XL, Dong Y, Zhu CL, Wang L, et al. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Mol Biol Evol. 2015;32(7):1880–9.

Article  CAS  PubMed  Google Scholar 

Yang J, Li WR, Lv FH, He SG, Tian SL, Peng WF, Sun YW, Zhao YX, Tu XL, Zhang M, et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol Biol Evol. 2016;33(10):2576–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang J, Jin ZB, Chen J, Huang XF, Li XM, Liang YB, Mao JY, Chen X, Zheng Z, Bakshi A, et al. Genetic signatures of high-altitude adaptation in Tibetans. Proc Natl Acad Sci. 2017;114(16):4189–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai YT, Yeung CKL, Omland KE, Pang EL, Hao Y, Liao BY, Cao HF, Zhang BW, Yeh CF, Hung CM, et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc Natl Acad Sci. 2019;116(6):2152–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Zhang Y, Li Y, Pan J, Wang D, Chen W, Zheng Z, He X, Zhao Q, Pu Y et al. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol Biol Evol. 2019;36(11):2591–603.

Li JT, Gao YD, Xie L, Deng C, Shi P, Guan ML, Huang S, Ren JL, Wu DD, Ding L, et al. Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proc Natl Acad Sci. 2018;115(33):8406–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun YB, Fu TT, Jin JQ, Murphy RW, Hillis DM, Zhang YP, Che J. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc Natl Acad Sci. 2018;115(45):E10634–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasquesi GIM, Adams RH, Card DC, Schield DR, Corbin AB, Perry BW, Reyes-Velasco J, Ruggiero RP, Vandewege MW, Shortt JA, et al. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun. 2018;9(1):2774.

Article  PubMed  PubMed Central  Google Scholar 

Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, Tissieres V, Pickle CS, Plajzer-Frick I, Lee EA, et al. Progressive loss of function in a limb enhancer during snake evolution. Cell. 2016;167(3):633-642 e611.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roscito JG, Sameith K, Parra G, Langer BE, Petzold A, Moebius C, Bickle M, Rodrigues MT, Hiller M. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nat Commun. 2018;9(1):4737.

Article  PubMed  PubMed Central  Google Scholar 

Vallender EJ, Lahn BT. Multiple independent origins of sex chromosomes in amniotes. Proc Natl Acad Sci. 2006;103(48):18031–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pie MR, Campos LLF, Meyer ALS, Duran A. The evolution of climatic niches in squamate reptiles. Proc Biol Sci. 1858;2017:284.

Google Scholar 

Navas CA. Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. Comp Biochem Physiol A Mol Integr Physiol. 2002;133(3):469–85.

Article  PubMed  Google Scholar 

He J, Xiu M, Tang X, Yue F, Wang N, Yang S, Chen Q. The different mechanisms of hypoxic acclimatization and adaptation in Lizard Phrynocephalus vlangalii living on Qinghai-Tibet Plateau. J Exp Zool A Ecol Genet Physiol. 2013;319(3):117–23.

Article  CAS  PubMed  Google Scholar 

Dai X, Zeng XM, Chen B, Wang YZ. The research on the karyotypes of six species in the genus Eremias from China. Hereditas. 2004;26(5):669–75.

PubMed  Google Scholar 

Qu A, Li Z. Study on the karyotype and C-banding pottern of chromosomes of Eremias Argus Argus. Journal of Xuzhou Normal University. 1992;4(1):30–33.

Uetz P, Stylianou A. The original descriptions of reptiles and their subspecies. Zootaxa. 2018;4375(2):257–64.

Article  PubMed  Google Scholar 

Parra G, Korf BI. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23(9):1061–7.

Article  CAS  PubMed  Google Scholar 

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.

Article  CAS  PubMed  Google Scholar 

Schield DR, Card DC, Hales NR, Perry BW, Pasquesi GM, Blackmon H, Adams RH, Corbin AB, Smith CF, Ramesh B, et al. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Res. 2019;29(4):590–601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suryamohan K, Krishnankutty SP, Guillory J, Jevit M, Schroder MS, Wu M, Kuriakose B, Mathew OK, Perumal RC, Koludarov I, et al. The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nat Genet. 2020;52(1):106–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourque G, Pevzner PA. Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 2002;12(1):26–36.

CAS  PubMed  PubMed Central  Google Scholar 

Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature. 2009;461(7261):267–71.

Article  CAS  PubMed  Google Scholar 

Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351(6322):117–21.

Article  CAS  PubMed  Google Scholar 

Sun YB, Fu TT, Jin JQ, Murphy RW, Hillis DM, Zhang YP, Che J. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc Natl Acad Sci U S A. 2018;115(45):E10634–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang P, Heier C, Qin W, Han L, Huang F, Sun Q. Molecular identification of transmembrane protein 68 as an endoplasmic reticulum-anchored and brain-specific protein. PLoS One. 2017;12(5):e0176980.

Article  PubMed  PubMed Central  Google Scholar 

Yang C, Yuan H, Gu J, Xu D, Wang M, Qiao J, Yang X, Zhang J, Yao M, Gu J, et al. ABCA8-mediated efflux of taurocholic acid contributes to gemcitabine insensitivity in human pancreatic cancer via the S1PR2-ERK pathway. Cell Death Discov. 2021;7(1):6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eizuka K, Nakashima D, Oka N, Wagai S, Takahara T, Saito T, Koike K, Kasamatsu A, Shiiba M, Tanzawa H, et al. SYT12 plays a critical role in oral cancer and may be a novel therapeutic target. J Cancer. 2019;10(20):4913–20.

Article  CAS 

留言 (0)

沒有登入
gif