Wnt/β-Catenin Signaling in Craniomaxillofacial Osteocytes

Goldring, S. R. The osteocyte: key player in regulating bone turnover. RMD Open 2015; 1: e000049 2015. https://doi.org/10.1136/rmdopen-2015-000049.

Heino TJ, Kurata K, Higaki H, Vaananen HK. Evidence for the role of osteocytes in the initiation of targeted remodeling. Technol Health Care. 2009;17:49–56. https://doi.org/10.3233/THC-2009-0534.

Article  PubMed  Google Scholar 

Kelder C, Kleverlaan C J, Gilijamse M, Bakker A D & de Vries T J Cells derived from human long bone appear more differentiated and more actively stimulate osteoclastogenesis compared to alveolar bone-derived cells. Int J Mol Sci 2020;21. https://doi.org/10.3390/ijms21145072.

Wan Q, et al. Osteoblasts of calvaria induce higher numbers of osteoclasts than osteoblasts from long bone. Bone. 2016;86:10–21. https://doi.org/10.1016/j.bone.2016.02.010.

Article  CAS  PubMed  Google Scholar 

Cane V, et al. Size and density of osteocyte lacunae in different regions of long bones. Calcif Tissue Int. 1982;34:558–63. https://doi.org/10.1007/BF02411304.

Article  CAS  PubMed  Google Scholar 

Almasoud NN, Tanneru N, Marei HF. Alveolar bone density and its clinical implication in the placement of dental implants and orthodontic mini-implants. Saudi Med J. 2016;37:684–9. https://doi.org/10.15537/Smj.2016.6.14274.

Article  PubMed  PubMed Central  Google Scholar 

Chen CH, et al. An osteopenic/osteoporotic phenotype delays alveolar bone repair. Bone. 2018;112:212–9. https://doi.org/10.1016/j.bone.2018.04.019.

Article  PubMed  Google Scholar 

Kuroshima S, Al-Omari FA, Sasaki M, Sawase T. Medication-related osteonecrosis of the jaw: a literature review and update. Genesis. 2022;60:e23500. https://doi.org/10.1002/dvg.23500.

Article  CAS  PubMed  Google Scholar 

Gardner JC, et al. Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab. 2005;90:6392–5. https://doi.org/10.1210/jc.2005-1235.

Article  CAS  PubMed  Google Scholar 

van Bezooijen RL, et al. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res. 2009;88:569–74. https://doi.org/10.1177/0022034509338340.

Article  CAS  PubMed  Google Scholar 

Harris SE, et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone. 2012;50:42–53. https://doi.org/10.1016/j.bone.2011.09.038.

Article  CAS  PubMed  Google Scholar 

Kirkpatrick DB, Rimoin DL, Kaitila I, Goodman SJ. The craniotubular bone modeling disorders: a neurosurgical introduction to rare skeletal dysplasias with cranial nerve compression. Surg Neurol. 1977;7:221–32.

CAS  PubMed  Google Scholar 

Wolff J, in The law of bone remodeling (ed Hirschwald) (Springer, 1892).

Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219:1–9. https://doi.org/10.1002/ar.1092190104.

Article  CAS  PubMed  Google Scholar 

Frost HM. From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec. 2001;262:398–419.

Article  CAS  PubMed  Google Scholar 

Organ C, Nunn CL, Machanda Z, Wrangham RW. Phylogenetic rate shifts in feeding time during the evolution of Homo. Proc Natl Acad Sci U S A. 2011;108:14555–9. https://doi.org/10.1073/pnas.1107806108.

Article  PubMed  PubMed Central  Google Scholar 

Brachetta-Aporta N, Gonzalez PN, Bernal V. Variation in facial bone growth remodeling in prehistoric populations from southern South America. Am J Phys Anthropol. 2019;169:422–34. https://doi.org/10.1002/ajpa.23857.

Article  PubMed  Google Scholar 

Allen M, R & Burr D, B The pathogenesis of bisphosphonate-related osteonecrosis of the jaw: so many hypotheses, so few data. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 2009; 67: 61-70. https://doi.org/10.1016/j.joms.2009.01.007.

Burr DB, Allen MR. Mandibular necrosis in beagle dogs treated with bisphosphonates. Orthod Craniofac Res. 2009;12:221–8. https://doi.org/10.1111/j.1601-6343.2009.01456.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huja S S, & Beck F, M Bone remodeling in maxilla, mandible, and femur of young dogs. Anatomical record (Hoboken, N.J. 2007) 2008; 291: 1–5. https://doi.org/10.1002/ar.20619.

Utreja A, Motevasel H, Bain C, Holland R, Robling A. The effect of overexpression of Lrp5 on the temporomandibular joint. Cartilage. 2021;13:419S-426S. https://doi.org/10.1177/1947603520968875.

Article  CAS  PubMed  Google Scholar 

Kondo T, Wakabayashi N. Influence of molar support loss on stress and strain in premolar periodontium: a patient-specific FEM study. J Dent. 2009;37:541–8. https://doi.org/10.1016/j.jdent.2009.03.015.

Article  PubMed  Google Scholar 

Xu Q, et al. Mechanoadaptive responses in the periodontium are coordinated by Wnt. J Dent Res. 2019;98:689–97. https://doi.org/10.1177/0022034519839438.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, et al. Molecular basis for periodontal ligament adaptation to in vivo loading. J Dent Res. 2019;98:331–8. https://doi.org/10.1177/0022034518817305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inoue M, et al. Forceful mastication activates osteocytes and builds a stout jawbone. Sci Rep. 2019;9:4404. https://doi.org/10.1038/s41598-019-40463-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kingsmill VJ, Boyde A, Davis GR, Howell PG, Rawlinson SC. Changes in bone mineral and matrix in response to a soft diet. J Dent Res. 2010;89:510–4. https://doi.org/10.1177/0022034510362970.

Article  CAS  PubMed  Google Scholar 

Kawakami T, Takise S, Fuchimoto T, Kawata H. Effects of masticatory movement on cranial bone mass and micromorphology of osteocytes and osteoblasts in developing rats. Asia Pac J Clin Nutr. 2009;18:96–104.

PubMed  Google Scholar 

Robling AG, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283:5866–75. https://doi.org/10.1074/jbc.M705092200.

Article  CAS  PubMed  Google Scholar 

Zhao D, et al. Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin alpha5. Bone Res. 2022;10:49. https://doi.org/10.1038/s41413-022-00222-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fulzele K, et al. Loss of Gsalpha in osteocytes leads to osteopenia due to sclerostin induced suppression of osteoblast activity. Bone. 2018;117:138–48. https://doi.org/10.1016/j.bone.2018.09.021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robinson D, et al. Load response of the natural tooth and dental implant: a comparative biomechanics study. J Adv Prosthodont. 2019;11:169–78. https://doi.org/10.4047/jap.2019.11.3.169.

Article  PubMed  PubMed Central  Google Scholar 

Tian Y, Sadowsky S J, Brunski J B, Yuan X & Helms J, A Effects of masticatory loading on bone remodeling around teeth vs. implants: insights from a preclinical model. Clin Oral Implants Res 2022. https://doi.org/10.1111/clr.13894.

Okawara H, et al. Effect of load-induced local mechanical strain on peri-implant bone cell activity related to bone resorption and formation in mice: an analysis of histology and strain distributions. J Mech Behav Biomed Mater. 2021;116:104370. https://doi.org/10.1016/j.jmbbm.2021.104370.

Article  CAS  PubMed  Google Scholar 

Mouraret S, et al. A pre-clinical murine model of oral implant osseointegration. Bone. 2014;58:177–84. https://doi.org/10.1016/j.bone.2013.07.021.

Article  CAS  PubMed  Google Scholar 

Coyac BR, et al. A novel system exploits bone debris for implant osseointegration. J Periodontol. 2021;92:716–26. https://doi.org/10.1002/JPER.20-0099.

Article  CAS  PubMed  Google Scholar 

Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485–506. https://doi.org/10.1146/annurev-physiol-021119-034332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rochefort GY, Pallu S, Benhamou CL. Osteocyte: the unrecognized side of bone tissue. Osteoporos Int. 2010;21:1457–69. https://doi.org/10.1007/s00198-010-1194-5.

Article  CAS  PubMed  Google Scholar 

Schurman C A, Verbruggen S W, & Alliston T, Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-beta signaling. Proc Natl Acad Sci U S A 2021;118. https://doi.org/10.1073/pnas.2023999118.

Moriishi T, et al. Sp7 Transgenic mice with a markedly impaired lacunocanalicular network induced sost and reduced bone mass by unloading. Int J Mol Sci 23:2022. https://doi.org/10.3390/ijms23063173

Tamplen M, et al. Treatment with anti-sclerostin antibody to stimulate mandibular bone formation. Head Neck. 2018;40:1453–60. https://doi.org/10.1002/hed.25128.

Article  PubMed  PubMed Central  Google Scholar 

Schwarze UY, Dobsak T, Gruber R, Bookstein FL. Anatomical similarity between the Sost-knockout mouse and sclerosteosis in humans. Anat Rec (Hoboken). 2020;303:2295–308. https://doi.org/10.1002/ar.24318.

Article  CAS  PubMed  Google Scholar 

Chen J, et al. Molecular basis for craniofacial phenotypes caused by sclerostin deletion. J Dent Res. 2021;100:310–7. https://doi.org/10.1177/0022034520963584.

Article  CAS  PubMed  Google Scholar 

Stein SA, et al. Sclerosteosis: neurogenetic and pathophysiologic analysis of an American kinship. Neurology. 1983;33:267–77. https://doi.org/10.1212/wnl.33.3.267.

Article  CAS 

留言 (0)

沒有登入
gif