Neolamarckia cadamba (Roxb.) Bosser (Rubiaceae) extracts: promising prospects for anticancer and antibacterial potential through in vitro and in silico studies

Pandey A, Negi PS. Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: a review. J Ethnopharmacol Elsevier. 2016;181:118–35.

Article  CAS  Google Scholar 

Dwevedi A, Sharma K, Sharma YK. Cadamba: A miraculous tree having enormous pharmacological implications. Pharmacogn Rev. 2015;9:107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khare C. Indian herbal remedies: rational Western therapy, ayurvedic, and other traditional usage, Botany. 2004. https://books.google.com/books?hl=en&lr=&id=463ERB3VeUoC&oi=fnd&pg=PA1&dq=Khare,+C.P.,+2011.+Indian+Herbal+Remedies:+Rational+Western+Therapy,+Ayurvedic+and+Other+Traditional+Usage,+Botany,+Springer+Science+%26+Business+Media,+New+York,+USA,+pp-66-67.+&ots=d6QMJKSF7p&sig=9AB9xk60lJ5SYRJpyYNjiCAbsQo. Accessed 30 Nov 2022.

Umachigi SP, Kumar GS, Jayaveera K, Kishorev KD, Ashok KCK, Dhanapal R. Antimicrobial, Wound healing and antioxidant activities of Anthocephalus Cadamba. Afr J Tradit Complement Altern Med. 2022;4:481.

Article  Google Scholar 

Verma R, Chaudhary F, Singh A, Pharm M, Pharmaceu Sci GJ. Neolamarckia Cadamba: a comprehensive pharmacological. Glob J Pharmaceu Sci. 2018;6(4):73–8.

Google Scholar 

Pandey A, Chauhan AS, Haware DJ, Negi PS. Proximate and mineral composition of Kadamba (Neolamarckia cadamba) fruit and its use in the development of nutraceutical enriched beverage. J Food Sci Technol. 2018;55:4330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandel M, Kaur S, Kumar S. Studies on the genoprotective/antioxidant potential of methanol extract of Anthocephalus cadamba (Roxb.) Miq. J Med Plants Res. 2011;5:4764–70.

Google Scholar 

Ahmed F, Rahman S, Ahmed N, Hossain M, Biswas A, Sarkar S, et al. Evaluation of Neolamarckia cadamba (Roxb) bosser leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. Afr J Tradit Complement Altern Med. 2010;8:79–81.

Article  PubMed  PubMed Central  Google Scholar 

Dolai N, Karmakar I, Suresh Kumar RB, Kar B, Bala A, Haldar PK. Evaluation of antitumor activity and in vivo antioxidant status of Anthocephalus cadamba on Ehrlich ascites carcinoma treated mice. J Ethnopharmacol. 2012;142:865–70.

Article  PubMed  Google Scholar 

Sumanta M, Dash G, Research AS-J of P, 2009 undefined. Analgesic, anti-inflammatory and antipyretic studies of Neolamarckia cadamba barks. cabdirect.org. https://www.cabdirect.org/cabdirect/abstract/20103127110. Accessed 4 Oct 2022

Rafshanjani M, Shuaib A, Parvin S, Kader M, 2014 undefined. Antimicrobial and Preliminary Cytotoxic effects of Ethanol extract and its fractions of Anthocephalus cadamba (Roxb.) Miqstem bark. search.ebscohost.com. https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=09767126&AN=100248234&h=vTcwT4AylGL%2BSJhpTlvviytQQ17oJQAv6nCI%2FSGyEWOH3VFDMcOvFhlVSwa6NGsTcz5%2B2Z0Huv3QDNwgx8lPMQ%3D%3D&crl=c. Accessed 4 Oct 2022

Singh S, Ishar MPS, Saxena AK, Kaur A. Cytotoxic effect of Anthocephalus cadamba Miq. leaves on human cancer cell lines. Pharmacogn J. 2013;5:127–9.

Article  Google Scholar 

Razali S, Firus Khan AY, Khatib A, Ahmed QU, Abdul Wahab R, Zakaria ZA. An in vitro anticancer activity evaluation of Neolamarckia cadamba (Roxb.) Bosser Leaves’ extract and its metabolite profile. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.741683.

Article  PubMed  PubMed Central  Google Scholar 

Chatterjee A, Sharma N, Mazumder PM. Evaluation of antioxidant, immunomodulatory and anticancer properties of methanolic extract of Neolamarckia cadamba Linn. Fruits. Indian J Pharm Educ Res. 2021;55:s501–9.

Article  CAS  Google Scholar 

Khandelwal V, Choudhary K. Antioxidant and anticancer potential of Neolamarckia cadamba (ROXB.) bark extract. J Exp Biol Agric Sci. 2020. https://doi.org/10.1806/2020.8(3).334.338.

Article  Google Scholar 

Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. https://pubmed.ncbi.nlm.nih.gov/33479224/. Accessed 25 May 2022

BaloghVictor JD III, Asham EH, Burroughs SG, Boktour M, Saharia A, et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;3:41–53.

Article  Google Scholar 

Galicia-Moreno M, Silva-Gomez JA, Lucano-Landeros S, Santos A, Monroy-Ramirez HC, Armendariz-Borunda J. Liver Cancer: Therapeutic Challenges and the Importance of Experimental Models. Can J Gastroenterol Hepatol 2021.

Liu CY, Chen KF, Chen PJ. Treatment of Liver Cancer. Cold Spring Harb Perspect Med. Cold Spring Harb Perspect Med. https://pubmed.ncbi.nlm.nih.gov/26187874/. Accessed 25 May 2022

KumarAmit P, Singh K, PoojaKavindra V, Tiwari N, et al. Network pharmacology-based study on apigenin present in the methanolic fraction of leaves extract of Cestrum nocturnum L. to uncover mechanism of action on hepatocellular carcinoma. Med Oncol. 2022;39:155.

Article  Google Scholar 

Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control. 2019;8(1):1–28.

Article  Google Scholar 

Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.

Article  CAS  Google Scholar 

Braz VS, Melchior K, Moreira CG. Escherichia coli as a multifaceted pathogenic and versatile bacterium. Front Cell Infect Microbiol. 2020;10:793.

Article  Google Scholar 

van Elsland D, Neefjes J. Bacterial infections and cancer. EMBO Rep. 2018;19(11):e46632.

Article  PubMed  PubMed Central  Google Scholar 

Yang B, Petrick JL, Thistle JE, Pinto LA, Kemp TJ, Tran HQ, et al. Bacterial translocation and risk of liver cancer in a Finnish cohort. Cancer Epidemiology Biomarkers and Prevention. Am Assoc Cancer Res. 2019;28:807–13.

CAS  Google Scholar 

Soo V, Kwan B, Quezada H, Castillo-Juárez I, Pérez-Eretza B, García-Contreras S, et al. Repurposing of Anticancer drugs for the treatment of bacterial infections. Curr Top Med Chem. 2017;17:1157–76.

Article  CAS  PubMed  Google Scholar 

Siddique HR, Mishra SK, Karnes RJ, Saleem M. Lupeol, a novel androgen receptor inhibitor: implications in prostate cancer therapy. Clin Cancer Res. 2011;17:5379–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh A, Verma A, Singh R, Sahoo AK, Samanta SK. Combination therapy of biogenic C-dots and lysozyme for enhanced antibacterial and antibiofilm activity. Nanotechnology. 2020;32:085104.

Article  Google Scholar 

Choi KJ, Baik IH, Ye SK, Lee YH. Molecular targeted therapy for hepatocellular carcinoma: present status and future directions. Biol Pharm Bull. 2015;38:986–91.

Article  CAS  PubMed  Google Scholar 

Wang W, Shui L, Liu Y, Zheng M. C-Kit, a double-edged sword in liver regeneration and diseases. Front Genet. 2021;12:598855.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sabbagh G, Berakdar N. Docking studies of flavonoid compounds as inhibitors of β-ketoacyl acyl carrier protein synthase I (Kas I) of Escherichia coli. J Mol Graph Model. 2015;61:214–23.

Article  CAS  PubMed  Google Scholar 

Abo-Bakr AM, Alsoghier HM, Abdelmonsef AH. Molecular docking, modeling, semiempirical calculations studies and in vitro evaluation of new synthesized pyrimidin-imide derivatives. J Mol Struct. 2022;1249:131548.

Article  CAS  Google Scholar 

Sauvage E, Derouaux A, Fraipont C, Joris M, Herman R, Rocaboy M, et al. Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS ONE. 2014;9:98042.

Article  Google Scholar 

Elfaky MA, El-Halawany AM, Koshak AE, Alshali KZ, El-Araby ME, Khayat MT, et al. Bioassay guided isolation and docking studies of a potential β-lactamase inhibitor from Clutia myricoides. Molecules. 2020;25(11):2566.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohi El-Deen EM, Abd El-Meguid EA, Hasabelnaby S, Karam EA, Nossier ES. Synthesis, docking studies, and in vitro evaluation of some novel thienopyridines and fused thienopyridine-quinolines as antibacterial agents and dna gyrase inhibitors. Molecules. 2019;24(20):3650.

Article  PubMed  PubMed Central  Google Scholar 

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717.

Article  PubMed  PubMed Central  Google Scholar 

Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–18.

Article  PubMed  Google Scholar 

Huang J, Mackerell AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34:2135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem. 2011;32:2359–68.

Article  CAS  PubMed  Google Scholar 

Kushwaha PP, Singh AK, Bansal T, Yadav A, Prajapati KS, Shuaib M, et al. Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking, molecular dynamics simulation, and MM-PBSA approach. Front Cell Infect Microbiol. 2021;11:728.

Article  Google Scholar 

Kumari R, Kumar R, Lynn A. g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54:1951–62.

Article  CAS  PubMed  Google Scholar 

Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret ftir spectroscope of organic material. Indones J Sci Technol. 2019;4:97–118.

Article  Google Scholar 

留言 (0)

沒有登入
gif