MORC2 and MAX contributes to the expression of glycolytic enzymes, breast cancer cell proliferation and migration

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

Article  CAS  PubMed  Google Scholar 

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

Article  CAS  PubMed  Google Scholar 

Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

Article  CAS  PubMed  Google Scholar 

Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

Article  CAS  PubMed  Google Scholar 

Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39:347–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Currie E, Schulze A, Zechner R, Walther TC, Farese RV. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39:191–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivenzon-Segal D, Boldin-Adamsky S, Seger D, Seger R, Degani H. Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. Int J Cancer. 2003;107:177–82.

Article  CAS  PubMed  Google Scholar 

Mathupala SP, Rempel A, Pedersen PL. Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr. 1997;29:339–43.

Article  CAS  PubMed  Google Scholar 

Rodriguez-Enriquez S, Marin-Hernandez A, Gallardo-Perez JC, Pacheco-Velazquez SC, Belmont-Diaz JA, Robledo-Cadena DX, Vargas-Navarro JL, Corona de la Pena NA, Saavedra E, Moreno-Sanchez R. Transcriptional regulation of energy metabolism in cancer cells. Cells. 2019. https://doi.org/10.3390/cells8101225.

Article  PubMed  PubMed Central  Google Scholar 

Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, Metabolism, and cancer. Cancer Discov. 2015;5:1024–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol. 2004;24:5923–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997;94:6658–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000;275:21797–800.

Article  CAS  PubMed  Google Scholar 

Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE, Nelson SJ, Kurhanewicz J, Vigneron DB, Goga A. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab. 2011;14:131–42.

Article  CAS  PubMed  Google Scholar 

Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000;16:653–99.

Article  CAS  PubMed  Google Scholar 

Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 2013;154:490–503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang FL, Cao JL, Xie HY, Sun R, Yang LF, Shao ZM, Li DQ. Cancer-associated MORC2-mutant M276I regulates an hnRNPM-mediated CD44 splicing switch to promote invasion and metastasis in triple-negative breast cancer. Cancer Res. 2018;78:5780–92.

Article  CAS  PubMed  Google Scholar 

Ding QS, Zhang L, Wang BC, Zeng Z, Zou XQ, Cao PB, Zhou GM, Tang M, Wu L, Wu LL, Yu HG, Guo Y, Zhou FX. Aberrant high expression level of MORC2 is a common character in multiple cancers. Hum Pathol. 2018;76:58–67.

Article  CAS  PubMed  Google Scholar 

Pan Z, Ding Q, Guo Q, Guo Y, Wu L, Tang M, Yu H, Zhou F. MORC2, a novel oncogene, is upregulated in liver cancer and contributes to proliferation, metastasis and chemoresistance. Int J Oncol. 2018;53:59–72.

CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Shao Y, He Y, Ning K, Cui X, Liu F, Wang Z, Li F. MORC2 promotes development of an aggressive colorectal cancer phenotype through inhibition of NDRG1. Cancer Sci. 2019;110:135–46.

Article  CAS  PubMed  Google Scholar 

Saroha HS, Kumar Guddeti R, Jacob JP, Kumar Pulukuri K, Karyala P. Pakala SB MORC2/β-catenin signaling axis promotes proliferation and migration of breast cancer cells. Med Oncol. 2022;39:135.

Article  CAS  PubMed  Google Scholar 

Sanchez-Solana B, Li DQ, Kumar R. Cytosolic functions of MORC2 in lipogenesis and adipogenesis. Biochim Biophys Acta. 2014;1843:316–26.

Article  CAS  PubMed  Google Scholar 

Su Y, Yu T, Wang Y, Huang X, Wei X. Circular RNA circDNM3OS functions as a miR-145-5p sponge to accelerate cholangiocarcinoma growth and glutamine metabolism by upregulating MORC2. Onco Targets Ther. 2021;14:1117–29.

Article  PubMed  PubMed Central  Google Scholar 

Guddeti RK, Thomas L, Kannan A, Karyala P, Pakala SB. The chromatin modifier MORC2 affects glucose metabolism by regulating the expression of lactate dehydrogenase a through a feed forward loop with c-Myc. FEBS Lett. 2021;595:1289–302.

Article  CAS  PubMed  Google Scholar 

Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2012;40:D841-846.

Article  CAS  PubMed  Google Scholar 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

Article  CAS  PubMed  Google Scholar 

Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, Morris Q. GeneMANIA update 2018. Nucleic Acids Res. 2018;46:W60–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O’Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47:D529–41.

Article  CAS  PubMed  Google Scholar 

Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res. 2017;45:D408–14.

Article  CAS  PubMed  Google Scholar 

Ravichandran S, Banerjee U, Dr GD, Kandukuru R, Thakur C, Chakravortty D, Balaji KN, Singh A, Chandra N. VB(10), a new blood biomarker for differential diagnosis and recovery monitoring of acute viral and bacterial infections. EBioMedicine. 2021;67:103352.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with cytoscape 3. Curr Protoc Bioinformatics. 2014. https://doi.org/10.1002/0471250953.bi0813s47.

Article  PubMed  PubMed Central  Google Scholar 

Mudunuri U, Che A, Yi M, Stephens RM. bioDBnet: the biological database network. Bioinformatics. 2009;25:555–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C. The protein data bank. Acta Crystallogr D Biol Crystallogr. 2002;58:899–907.

Article  PubMed 

留言 (0)

沒有登入
gif