Unwinding the Role of the CMG Helicase in Inborn Errors of Immunity

Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022;42(7):1473–507.

Article  PubMed  PubMed Central  Google Scholar 

Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev. 2019;287(1):202–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Della Chiesa M, De Maria A, Muccio L, Bozzano F, Sivori S, Moretta L. Human NK Cells and herpesviruses: mechanisms of recognition, response and adaptation. Front Microbiol. 2019;10:2297.

Article  PubMed  PubMed Central  Google Scholar 

Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132(3):515–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature. 2001;409(6823):1055–60.

Article  CAS  PubMed  Google Scholar 

Conte MI, Poli MC, Taglialatela A, Leuzzi G, Chinn IK, Salinas SA, et al. Partial loss-of-function mutations in GINS4 lead to NK cell deficiency with neutropenia. JCI Insight. 2022;7(21).

Mace EM, Paust S, Conte MI, Baxley RM, Schmit MM, Patil SL, et al. Human NK cell deficiency as a result of biallelic mutations in MCM10. J Clin Invest. 2020;130(10):5272–86.

Hughes CR, Guasti L, Meimaridou E, Chuang CH, Schimenti JC, King PJ, et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest. 2012;122(3):814–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cottineau J, Kottemann MC, Lach FP, Kang YH, Vely F, Deenick EK, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127(5):1991–2006.

Article  PubMed  PubMed Central  Google Scholar 

Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest. 2012;122(3):821–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baxley RM, Leung W, Schmit MM, Matson JP, Yin L, Oram MK, et al. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun. 2021;12(1):1626.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo YS, Kang YH. The human replicative helicase, the CMG complex, as a target for anti-cancer therapy. Front Mol Biosci. 2018;5:26.

Article  PubMed  PubMed Central  Google Scholar 

Ying CY, Gautier J. The ATPase activity of MCM2-7 is dispensable for pre-RC assembly but is required for DNA unwinding. EMBO J. 2005;24(24):4334–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Z, Georgescu R, Bai L, Zhang D, Li H, O’Donnell ME. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Nat Commun. 2020;11(1):688.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, O'Donnell ME. The eukaryotic CMG helicase at the replication fork: emerging architecture reveals an unexpected mechanism. Bioessays. 2018;40(3).

C Lee BT. Eukaryotic DNA polymerase-alpha. Encyclopedia of Biological Chemistry: Second Edition. 2013;1:241-4.

Mimura S, Masuda T, Matsui T, Takisawa H. Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Genes Cells. 2000;5(6):439–52.

Article  CAS  PubMed  Google Scholar 

Thu YM, Bielinsky AK. Enigmatic roles of Mcm10 in DNA replication. Trends Biochem Sci. 2013;38(4):184–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diffley JF. Regulation of early events in chromosome replication. Curr Biol. 2004;14(18):R778–86.

Article  CAS  PubMed  Google Scholar 

Remus D, Diffley JF. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol. 2009;21(6):771–7.

Article  CAS  PubMed  Google Scholar 

Kohler C, Koalick D, Fabricius A, Parplys AC, Borgmann K, Pospiech H, et al. Cdc45 is limiting for replication initiation in humans. Cell Cycle. 2016;15(7):974–85.

Article  PubMed  PubMed Central  Google Scholar 

Wong PG, Winter SL, Zaika E, Cao TV, Oguz U, Koomen JM, et al. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS ONE. 2011;6(3): e17533.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das M, Singh S, Pradhan S, Narayan G. MCM paradox: abundance of eukaryotic replicative helicases and genomic integrity. Mol Biol Int. 2014;2014: 574850.

Article  PubMed  PubMed Central  Google Scholar 

Sedlackova H, Rask MB, Gupta R, Choudhary C, Somyajit K, Lukas J. Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature. 2020;587(7833):297–302.

Article  CAS  PubMed  Google Scholar 

Krastanova I, Sannino V, Amenitsch H, Gileadi O, Pisani FM, Onesti S. Structural and functional insights into the DNA replication factor Cdc45 reveal an evolutionary relationship to the DHH family of phosphoesterases. J Biol Chem. 2012;287(6):4121–8.

Article  CAS  PubMed  Google Scholar 

Szambowska A, Tessmer I, Kursula P, Usskilat C, Prus P, Pospiech H, et al. DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding. Nucleic Acids Res. 2014;42(4):2308–19.

Article  CAS  PubMed  Google Scholar 

Szambowska A, Tessmer I, Prus P, Schlott B, Pospiech H, Grosse F. Cdc45-induced loading of human RPA onto single-stranded DNA. Nucleic Acids Res. 2017;45(6):3217–30.

CAS  PubMed  PubMed Central  Google Scholar 

Can G, Kauerhof AC, Macak D, Zegerman P. Helicase subunit Cdc45 targets the checkpoint kinase Rad53 to both replication initiation and elongation complexes after fork stalling. Mol Cell. 2019;73(3):562-73 e3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forsburg SL. Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev. 2004;68(1):109–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yankulov K, Todorov I, Romanowski P, Licatalosi D, Cilli K, McCracken S, et al. MCM proteins are associated with RNA polymerase II holoenzyme. Mol Cell Biol. 1999;19(9):6154–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DaFonseca CJ, Shu F, Zhang JJ. Identification of two residues in MCM5 critical for the assembly of MCM complexes and Stat1-mediated transcription activation in response to IFN-gamma. Proc Natl Acad Sci U S A. 2001;98(6):3034–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang JJ, Zhao Y, Chait BT, Lathem WW, Ritzi M, Knippers R, et al. Ser727-dependent recruitment of MCM5 by Stat1alpha in IFN-gamma-induced transcriptional activation. EMBO J. 1998;17(23):6963–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sterner JM, Dew-Knight S, Musahl C, Kornbluth S, Horowitz JM. Negative regulation of DNA replication by the retinoblastoma protein is mediated by its association with MCM7. Mol Cell Biol. 1998;18(5):2748–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kukimoto I, Aihara S, Yoshiike K, Kanda T. Human papillomavirus oncoprotein E6 binds to the C-terminal region of human minichromosome maintenance 7 protein. Biochem Biophys Res Commun. 1998;249(1):258–62.

Article  CAS  PubMed  Google Scholar 

Ishimi Y, Ichinose S, Omori A, Sato K, Kimura H. Binding of human minichromosome maintenance proteins with histone H3. J Biol Chem. 1996;271(39):24115–22.

Article  CAS  PubMed  Google Scholar 

Mohri T, Ueno M, Nagahama Y, Gong ZY, Asano M, Oshima H, et al. Requirement of SLD5 for Early Embryogenesis. PLoS ONE. 2013;8(11):e78961.

Jia W, Hsieh HY, Kidoya H, Takakura N. Embryonic expression of GINS members in the development of the mammalian nervous system. Neurochem Int. 2019;129: 104465.

Article  CAS  PubMed  Google Scholar 

Varga M, Csalyi K, Bertyak I, Menyhard DK, Poole RJ, Cerveny KL, et al. Tissue-specific requirement for the GINS complex during zebrafish development. Front Cell Dev Biol. 2020;8:373.

Article  PubMed  PubMed Central  Google Scholar 

Zhu Z, Yu Z, Rong Z, Luo Z, Zhang J, Qiu Z, et al. The novel GINS4 axis promotes gastric cancer growth and progression by activating Rac1 and CDC42. Theranostics. 2019;9(26):8294–311.

留言 (0)

沒有登入
gif