Delivering on the promise of protein degraders

Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

Article  CAS  PubMed  Google Scholar 

Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

Article  PubMed  Google Scholar 

Churcher, I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J. Med. Chem. 61, 444–452 (2018).

Article  CAS  PubMed  Google Scholar 

Maple, H. J., Clayden, N., Baron, A., Stacey, C. & Felix, R. Developing degraders: principles and perspectives on design and chemical space. MedChemComm 10, 1755–1764 (2019).

Article  CAS  PubMed  Google Scholar 

Pettersson, M. & Crews, C. M. Proteolysis targeting chimeras (PROTACs) — past, present and future. Drug Discov. Today Technol. 31, 15–27 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

Article  CAS  PubMed  Google Scholar 

Rambacher, K. M., Calabrese, M. F. & Yamaguchi, M. Perspectives on the development of first-in-class protein degraders. Future Med. Chem. 13, 1203–1226 (2021).

Article  CAS  PubMed  Google Scholar 

Alabi, S. B. & Crews, C. M. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J. Biol. Chem. 296, 100647 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okuhira, K. et al. Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein. FEBS Lett. 585, 1147–1152 (2011).

Article  CAS  PubMed  Google Scholar 

Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, J. et al. Emerging protein degradation strategies: expanding the scope to extracellular and membrane proteins. Theranostics 11, 8337–8349 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samarasinghe, K. T. G. et al. Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chem. Biol. 28, 648–661 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e5 (2018).

Article  CAS  PubMed  Google Scholar 

Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cantrill, C. et al. Fundamental aspects of DMPK optimization of targeted protein degraders. Drug. Discov. Today 25, 969–982 (2020).

Article  CAS  PubMed  Google Scholar 

Liu, X. et al. Assays and technologies for developing proteolysis targeting chimera degraders. Future Med. Chem. 12, 1155–1179 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Pike, A., Williamson, B., Harlfinger, S., Martin, S. & McGinnity, D. F. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discov. Today 25, 1793–1800 (2020).

Article  CAS  PubMed  Google Scholar 

Rodriguez-Rivera, F. P. & Levi, S. M. Unifying catalysis framework to dissect proteasomal degradation paradigms. ACS Cent. Sci. 7, 1117–1125 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iconomou, M. & Saunders, D. N. Systematic approaches to identify E3 ligase substrates. Biochemical J. 473, 4083–4101 (2016).

Article  CAS  Google Scholar 

Khan, S. et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 1938–1947 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Troup, R. I., Fallan, C. & Baud, M. G. J. Current strategies for the design of PROTAC linkers: a critical review. Explor. Target. Antitumor Ther. 1, 273–312 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Morgan, P. et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov. Today 17, 419–424 (2012).

Article  CAS  PubMed  Google Scholar 

Bartlett, D. W. & Gilbert, A. M. A kinetic proofreading model for bispecific protein degraders. J. Pharmacokinet. Pharmacodyn. 48, 149–163 (2021).

Article  CAS  PubMed  Google Scholar 

Bartlett, D. W. & Gilbert, A. M. Translational PK–PD for targeted protein degradation. Chem. Soc. Rev. 51, 3477–3486 (2022).

Article  CAS  PubMed  Google Scholar 

Nowak, R. P. & Jones, L. H. Target validation using PROTACs: applying the four pillars framework. SLAS Discov. 26, 474–483 (2021).

Article  CAS  PubMed  Google Scholar 

Edmondson, S. D., Yang, B. & Fallan, C. Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’ chemical space: recent progress and future challenges. Bioorg. Med. Chem. Lett. 29, 1555–1564 (2019).

Article  CAS  PubMed  Google Scholar 

Shultz, M. D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem. 62, 1701–1714 (2019).

Article  CAS  PubMed  Google Scholar 

Ermondi, G., Vallaro, M. & Caron, G. Degraders early developability assessment: face-to-face with molecular properties. Drug Discov. Today 25, 1585–1591 (2020).

Article  CAS  PubMed  Google Scholar 

Ermondi, G., Vallaro, M., Goetz, G., Shalaeva, M. & Caron, G. Updating the portfolio of physicochemical descriptors related to permeability in the beyond the Rule of 5 chemical space. Eur. J. Pharm. Sci. 146, 105274 (2020).

Article  CAS  PubMed  Google Scholar 

Rossi Sebastiano, M. et al. Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the Rule of 5. J. Med. Chem. 61, 4189–4202 (2018).

Article  CAS  PubMed  Google Scholar 

Klein, V. G. et al. Understanding and improving the membrane permeability of VH032-based PROTACs. ACS Med. Chem. Lett. 11, 1732–1738 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atilaw, Y. et al. Solution conformations shed light on PROTAC cell permeability. ACS Med. Chem. Lett. 12, 107–114 (2021).

Article  CAS  PubMed  Google Scholar 

Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022).

Article 

留言 (0)

沒有登入
gif