Using Finite Element Modeling in Bone Mechanoadaptation

Brekelmans WAM, Poort HW, Slooff TJJH. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand. 1972;43(5):301–17. https://doi.org/10.3109/17453677208998949.

Article  CAS  PubMed  Google Scholar 

McLeish RD, Charnley J. Abduction forces in the one-legged stance. J Biomech. 1970;3(2):191–209. https://doi.org/10.1016/0021-9290(70)90006-0.

Article  CAS  PubMed  Google Scholar 

Brown TD, Ferguson AB. The development of a computational stress analysis of the femoral head. J Bone Joint Surg. 1978;60(5):619–29.

Article  CAS  PubMed  Google Scholar 

Hayes WC, Snyder B, Levine BM, Ramaswamy S. Stress-morphology relationships in trabecular bone of the patella. Finite Elem Biomech, John Wiley. 1982;12:223–68.

Google Scholar 

Valliappan S, Svensson NL, Wood RD. Three dimensional stress analysis of the human femur. Comput Biol Med. 1977;7(4):253–64. https://doi.org/10.1016/0010-4825(77)90031-2.

Article  CAS  PubMed  Google Scholar 

Rohlmann A, Mössner U, Bergmann G, Kölbel R. Finite-element-analysis and experimental investigation of stresses in a femur. J Biomed Eng. 1982;4(3):241–6. https://doi.org/10.1016/0141-5425(82)90009-7.

Article  CAS  PubMed  Google Scholar 

Brockhurst PJ, Svensson NL. Design of total hip prosthesis: the femoral stem. Med Prog Technol. 1977;5(2):73–102.

CAS  PubMed  Google Scholar 

Huiskes R, Chao EYS. A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech. 1983;16(6):385–409. https://doi.org/10.1016/0021-9290(83)90072-6.

Article  CAS  PubMed  Google Scholar 

Hollister SJ, Kikuchi N, Goldstein SA. Do bone ingrowth processes produce a globally optimized structure? J Biomech. 1993;26(4–5):391–407. https://doi.org/10.1016/0021-9290(93)90003-W.

Article  CAS  PubMed  Google Scholar 

Huiskes R, Hollister SJ. From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J Biomech Eng. 1993;115(4B):520–7. https://doi.org/10.1115/1.2895534.

Article  CAS  PubMed  Google Scholar 

Fyhrie DP, Carter DR. Femoral head apparent density distribution predicted from bone stresses. J Biomech. 1990;23(1):1–10. https://doi.org/10.1016/0021-9290(90)90363-8.

Article  CAS  PubMed  Google Scholar 

Orr TE, Beaupré GS, Carter DR, Schurman DJ. Computer predictions of bone remodeling around porous-coated implants. J Arthroplasty. 1990;5(3):191–200. https://doi.org/10.1016/S0883-5403(08)80074-5.

Article  CAS  PubMed  Google Scholar 

Beaupré GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling-theoretical development: time-dependent modeling and remodeling. J Orthop Res. 1990;8(5):651–61. https://doi.org/10.1002/jor.1100080506.

Article  PubMed  Google Scholar 

Beaupré GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation: time-dependent remodeling theory. J Orthop Res. 1990;8(5):662–70. https://doi.org/10.1002/jor.1100080507.

Article  PubMed  Google Scholar 

Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3–11. https://doi.org/10.1002/jbmr.5650040103.

Article  CAS  PubMed  Google Scholar 

Hollister SJ, Riemer BA. Digital-image-based finite element analysis for bone microstructure using conjugate gradient and Gaussian filter techniques. San Diego, CA. 1993;95–106. https://doi.org/10.1117/12.146616.

Keyak JH, Meagher JM, Skinner HB, Mote CD. Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng. 1990;12(5):389–97. https://doi.org/10.1016/0141-5425(90)90022-F.

Article  CAS  PubMed  Google Scholar 

Viceconti M, Bellingeri L, Cristofolini L, Toni A. A comparative study on different methods of automatic mesh generation of human femurs. Med Eng Phys. 1998;20(1):1–10. https://doi.org/10.1016/S1350-4533(97)00049-0.

Article  CAS  PubMed  Google Scholar 

Tadepalli SC, Erdemir A, Cavanagh PR. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. J Biomech. 2011;44(12):2337–43. https://doi.org/10.1016/j.jbiomech.2011.05.006.

Article  PubMed  PubMed Central  Google Scholar 

Bourne BC, van der Meulen MCH. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J Biomech. 2004;37(5):613–21. https://doi.org/10.1016/j.jbiomech.2003.10.002.

Article  PubMed  Google Scholar 

van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech. 1995;28(1):69–81. https://doi.org/10.1016/0021-9290(95)80008-5.

Article  PubMed  Google Scholar 

Taddei F, Schileo E, Helgason B, Cristofolini L, Viceconti M. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys. 2007;29(9):973–9. https://doi.org/10.1016/j.medengphy.2006.10.014.

Article  PubMed  Google Scholar 

Smit TH, Huyghe JM, Cowin SC. Estimation of the poroelastic parameters of cortical bone. J Biomech. 2002;35(6):829–35. https://doi.org/10.1016/S0021-9290(02)00021-0.

Article  PubMed  Google Scholar 

Pereira AF, Shefelbine SJ. The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability. Biomech Model Mechanobiol. 2014;13(1):215–25. https://doi.org/10.1007/s10237-013-0498-8.

Article  PubMed  Google Scholar 

Steck R, Niederer P, Knothe Tate ML. A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone. J Theor Biol. 2003;220(2):249–59. https://doi.org/10.1006/jtbi.2003.3163.

Article  CAS  PubMed  Google Scholar 

Guo XE, Eichler MJ, Takai E, Kim CH. Quantification of a rat tail vertebra model for trabecular bone adaptation studies. J Biomech. 2002;35(3):363–8. https://doi.org/10.1016/S0021-9290(01)00212-3.

Article  PubMed  Google Scholar 

Ulrich D, van Rietbergen B, Weinans H, Rüegsegger P. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech. 1998;31(12):1187–92. https://doi.org/10.1016/S0021-9290(98)00118-3.

Article  CAS  PubMed  Google Scholar 

van Rietbergen B. Micro-FE analyses of bone: state of the art. In Noninvasive Assess Trabecular Bone Archit Competence Bone. 496, S. Majumdar and B. K. Bay, Eds. Boston, MA: Springer US. 2001;21–30. https://doi.org/10.1007/978-1-4615-0651-5_3.

De Souza RL, Matsuura M, Eckstein F, Rawlinson SCF, Lanyon LE, Pitsillides AA. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone. 2005;37(6):810–8. https://doi.org/10.1016/j.bone.2005.07.022.

Article  PubMed  Google Scholar 

Fritton J, Myers E, Wright T, Vandermeulen M. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone. 2005;36(6):1030–8. https://doi.org/10.1016/j.bone.2005.02.013.

Article  CAS  PubMed  Google Scholar 

Schulte FA, et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS One. 2013;8(4):e62172. https://doi.org/10.1371/journal.pone.0062172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM. The influence of age on adaptive bone formation and bone resorption. Biomaterials. 2014;35(34):9290–301. https://doi.org/10.1016/j.biomaterials.2014.07.051.

Article  CAS  PubMed  Google Scholar 

Patel TK, Brodt MD, Silva MJ. Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice. J Biomech. 2014;47(2):451–7. https://doi.org/10.1016/j.jbiomech.2013.10.052.

Article  PubMed  Google Scholar 

Moustafa A, et al. Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int. 2012;23(4):1225–34. https://doi.org/10.1007/s00198-011-1656-4.

Article  CAS  PubMed  Google Scholar 

Lewis KJ, et al. Osteocyte calcium signals encode strain magnitude and loading frequency in vivo. Proc Natl Acad Sci USA. 2017;114(44):11775–80. https://doi.org/10.1073/pnas.1707863114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva MJ, Brodt MD, Hucker WJ. Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice. Anat Rec. 2005;283A(2):380–90. https://doi.org/10.1002/ar.a.20171.

Article  Google Scholar 

Willie BM, et al. Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57Bl/6 mice coincides with a reduction in deformation to load. Bone. 2013;55(2):335–46. https://doi.org/10.1016/j.bone.2013.04.023.

Article  PubMed  Google Scholar 

Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM. The periosteal bone surface is less mechano-responsive than the endocortical. Sci Rep. 2016;6(1):23480. https://doi.org/10.1038/srep23480.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif