Propionate-producing Veillonella parvula regulates the malignant properties of tumor cells of OSCC

Tang G, et al. TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway[J]. Int J Mol Med. 2019;44(6):2161–70.

CAS  PubMed  PubMed Central  Google Scholar 

Wei J, et al. Salvianolic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1α signaling pathway[J]. Cell Death Dis. 2018;9(6):599.

Article  PubMed  PubMed Central  Google Scholar 

Roi A, et al. The challenges of OSCC diagnosis: salivary cytokines as potential biomarkers[J]. J Clin Med. 2020;9(9):2866.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia L, et al. Trop2 inhibition of P16 expression and the cell cycle promotes intracellular calcium release in OSCC[J]. Int J Biol Macromol. 2020;164:2409–17.

Article  CAS  PubMed  Google Scholar 

Sasahira T, Bosserhoff AK, Kirita T. The importance of melanoma inhibitory activity gene family in the tumor progression of oral cancer[J]. Pathol Int. 2018;68(5):278–86.

Article  CAS  PubMed  Google Scholar 

Lipinski M, et al. Human trophoblast cell-surface antigens defined by monoclonal antibodies[J]. Proc Natl Acad Sci USA. 1981;78:5147–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenárt S, et al. Trop2: jack of all trades, master of none[J]. Cancers (Basel). 2020;12(11):3328.

Article  PubMed  Google Scholar 

Stewart D, Cristea M. Antibody-drug conjugates for ovarian cancer: current clinical development[J]. Curr Opin Obstet Gynecol. 2019;31(1):18–23.

Article  PubMed  Google Scholar 

Liu J, et al. A novel human monoclonal Trop2-IgG antibody inhibits ovarian cancer growth in vitro and in vivo[J]. Biochem Biophys Res Commun. 2019;512(2):276–82.

Article  CAS  PubMed  Google Scholar 

Zhao W, et al. The role and molecular mechanism of Trop2 induced epithelial-mesenchymal transition through mediated β-catenin in gastric cancer[J]. Cancer Med. 2019;8(3):1135–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao W, et al. The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cance[J]. Am J Cancer Res. 2019;9(8):1846–56.

CAS  PubMed  PubMed Central  Google Scholar 

Jordheim LP, et al. Unexpected growth-promoting effect of Oxaliplatin in excision repair cross-complementation group 1 transfected human colon cancer cells[J]. Pharmacology. 2018;102(3–4):161–8.

Article  CAS  PubMed  Google Scholar 

Nishimura T, et al. Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody[J]. Cancer Med. 2019;8(18):7781–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang XD, et al. Trop2 inhibition suppresses the proliferation and invasion of laryngeal carcinoma cells via the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway[J]. Mol Med Rep. 2015;12(1):865–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wanger TM, et al. Differential regulation of TROP2 release by PKC isoforms through vesicles and ADAM17[J]. Cell Signal. 2015;27(7):1325–35.

Article  CAS  PubMed  Google Scholar 

Zhang B, et al. Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation[J]. BMC Cancer. 2020;20(1):815.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peterson J, et al. The NIH Human Microbiome Project[J]. Genome Res. 2009;19(12):2317–23.

Article  PubMed  PubMed Central  Google Scholar 

Zhou CB, Zhou YL, Fang JY. Gut microbiota in cancer immune response and immunotherapy[J]. Trends Cancer. 2021;7(7):647–60.

Article  CAS  PubMed  Google Scholar 

Gao R, et al. Gut microbiota and colorectal cancer[J]. Eur J Clin Microbiol Infect Dis. 2017;36(5):757–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angelucci F, et al. Antibiotics, gut microbiota, and Alzheimer’s disease[J]. J Neuroinflammation. 2019;16(1):108.

Article  PubMed  PubMed Central  Google Scholar 

Zhao H, et al. Variations in oral microbiota associated with oral cancer[J]. Sci Rep. 2017;7(1):11773.

Article  PubMed  PubMed Central  Google Scholar 

Mager DL, et al. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects[J]. J Transl Med. 2005;3:27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, et al. Variations in oral microbiota composition are associated with a risk of throat cancer[J]. Front Cell Infect Microbiol. 2019;9:205.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Börnigen D, et al. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer[J]. Sci Rep. 2017;7(1):17686.

Article  PubMed  PubMed Central  Google Scholar 

Granato DC, et al. Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients[J]. Biochim Biophys Acta Proteins Proteom. 2021;1869(8):140659.

Article  CAS  PubMed  Google Scholar 

Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters[J]. Trends Microbiol. 2018;26(7):563–74.

Article  CAS  PubMed  Google Scholar 

Han JH, et al. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41[J]. PLoS One. 2014;9(4):e95268.

Article  PubMed  PubMed Central  Google Scholar 

Bindels LB, et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver[J]. Br J Cancer. 2012;107(8):1337–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng H, et al. Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: linking dietary fiber to cancer prevention[J]. Nutr Res. 2020;83:63–72.

Article  CAS  PubMed  Google Scholar 

Thirunavukkarasan M, et al. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells[J]. PLoS One. 2017;12(10):e0186334.

Article  PubMed  PubMed Central  Google Scholar 

Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis[J]. Pharmacol Ther. 2016;164:144–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang G, et al. High expression of TROP2 is correlated with poor prognosis of oral squamous cell carcinoma[J]. Pathol Res Pract. 2018;214(10):1606–12.

Article  CAS  PubMed  Google Scholar 

Sherrard LJ, Bell SC, Tunney MM. The role of anaerobic bacteria in the cystic fibrosis airway[J]. Curr Opin Pulm Med. 2016;22(6):637–43.

Article  CAS  PubMed  Google Scholar 

Brook I. Veillonella infections in children[J]. J Clin Microbiol. 1996;34(5):1283–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo YX, et al. Research progress in the relationship between Veillonella and oral diseases[J]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2020;38(5):576–82.

PubMed  Google Scholar 

Jia YJ, et al. Association between oral microbiota and cigarette smoking in the chinese population[J]. Front Cell Infect Microbiol. 2021;11:658203.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luppens SB, et al. Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm[J]. Oral Microbiol Immunol. 2008;23(3):183–9.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif