A Model-Informed Approach to Accelerate the Clinical Development of Janagliflozin, an Innovative SGLT2 Inhibitor

Ogurtsova K, Guariguata L, Barengo NC, Ruiz PL, Sacre JW, Karuranga S, et al. IDF diabetes Atlas: global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract. 2022;183:109118. https://doi.org/10.1016/j.diabres.2021.109118.

Article  PubMed  Google Scholar 

Reed J, Bain S, Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes Metab Syndr Obes Targets Therapy. 2021;14:3567–602. https://doi.org/10.2147/dmso.S319895.

Article  Google Scholar 

Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. 2021;128(11):1580–91. https://doi.org/10.1016/j.ophtha.2021.04.027.

Article  PubMed  Google Scholar 

Doyle-Delgado K, Chamberlain JJ, Shubrook JH, Skolnik N, Trujillo J. Pharmacologic approaches to glycemic treatment of type 2 diabetes: synopsis of the 2020 American Diabetes Association’s Standards of Medical Care in Diabetes Clinical Guideline. Ann Intern Med. 2020;173(10):813–21. https://doi.org/10.7326/m20-2470.

Article  PubMed  Google Scholar 

Marx N, Davies MJ, Grant PJ, Mathieu C, Petrie JR, Cosentino F, et al. Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. Lancet Diabetes Endocrinol. 2021;9(1):46–52. https://doi.org/10.1016/s2213-8587(20)30343-0.

Article  CAS  PubMed  Google Scholar 

Khunti K, Jabbour S, Cos X, Mudaliar S, Mende C, Bonaca M, et al. Sodium-glucose cotransporter-2 (SGLT-2) inhibitors in patients with type 2 diabetes: barriers and solutions for improving uptake in routine clinical practice. Diabetes Obes Metab. 2022. https://doi.org/10.1111/dom.14684.

Article  PubMed  PubMed Central  Google Scholar 

Berg DD, Docherty KF, Sattar N, Jarolim P, Welsh P, Jhund PS, et al. Serial assessment of high-sensitivity cardiac troponin and the effect of dapagliflozin in patients with heart failure with reduced ejection fraction: an analysis of the DAPA-HF Trial. Circulation. 2022;145(3):158–69. https://doi.org/10.1161/circulationaha.121.057852.

Article  CAS  PubMed  Google Scholar 

Light PE. Decoding the effects of SGLT2 inhibitors on cardiac arrhythmias in heart failure. Eur Heart J. 2021;42(36):3739–40. https://doi.org/10.1093/eurheartj/ehab563.

Article  PubMed  PubMed Central  Google Scholar 

Curtain JP, Docherty KF, Jhund PS, Petrie MC, Inzucchi SE, Køber L, et al. Effect of dapagliflozin on ventricular arrhythmias, resuscitated cardiac arrest, or sudden death in DAPA-HF. Eur Heart J. 2021;42(36):3727–38. https://doi.org/10.1093/eurheartj/ehab560.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song L, Yao X, Liu Y, Zhong W, Jiang J, Liu H, et al. Translational prediction of first-in-human pharmacokinetics and pharmacodynamics of janagliflozin, a selective SGLT2 inhibitor, using allometric scaling, dedrick and PK/PD modeling methods. Eur J Pharm Sci. 2020;147:105281. https://doi.org/10.1016/j.ejps.2020.105281.

Article  CAS  PubMed  Google Scholar 

Marshall SF, Burghaus R, Cosson V, Cheung SY, Chenel M, DellaPasqua O, et al. Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharmacomet Syst Pharmacol. 2016;5(3):93–122. https://doi.org/10.1002/psp4.12049.

Article  CAS  Google Scholar 

Fang L, Kim MJ, Li Z, Wang Y, DiLiberti CE, Au J, et al. Model-informed drug development and review for generic products: summary of FDA Public Workshop. Clin Pharmacol Ther. 2018;104(1):27–30. https://doi.org/10.1002/cpt.1065.

Article  PubMed  Google Scholar 

Li X, Zhu X, Liu J, Li Q, Zhang H, Li C, et al. Pharmacokinetics, pharmacodynamics and tolerability of single and multiple doses of janagliflozin, a sodium-glucose co-transporter-2 inhibitor, in Chinese people with type 2 diabetes mellitus. Diabetes Obes Metab. 2020;22(12):2316–24. https://doi.org/10.1111/dom.14156.

Article  CAS  PubMed  Google Scholar 

Kaku K, Yamamoto K, Fukushima Y, Lliev H, Yasui A. Safety and effectiveness of empagliflozin in Japanese patients with type 2 diabetes: final results of a 3-year post-marketing surveillance study. Expert Opin Drug Saf. 2022. https://doi.org/10.1080/14740338.2022.2054987.

Article  PubMed  Google Scholar 

Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014;53(1):17–27. https://doi.org/10.1007/s40262-013-0104-3.

Article  CAS  PubMed  Google Scholar 

Komoroski B, Vachharajani N, Boulton D, Kornhauser D, Geraldes M, Li L, et al. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther. 2009;85(5):520–6. https://doi.org/10.1038/clpt.2008.251.

Article  CAS  PubMed  Google Scholar 

Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D, Pfister M. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin Pharmacol Ther. 2009;85(5):513–9. https://doi.org/10.1038/clpt.2008.250.

Article  CAS  PubMed  Google Scholar 

Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25. https://doi.org/10.1007/s40262-013-0126-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 2016;6(2):e009417. https://doi.org/10.1136/bmjopen-2015-009417.

Article  PubMed  PubMed Central  Google Scholar 

Maurer TS, Ghosh A, Haddish-Berhane N, Sawant-Basak A, Boustany-Kari CM, She L, et al. Pharmacodynamic model of sodium-glucose transporter 2 (SGLT2) inhibition: implications for quantitative translational pharmacology. AAPS J. 2011;13(4):576–84. https://doi.org/10.1208/s12248-011-9297-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

FDA. Clinical pharmacology and biopharmaceutics review of canagliflozin. Center for Drug Evaluation and Research. 2012;Reference ID: 3256450; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204042Orig1s000ClinPharmR.pdf. Accessed 2 Feb 2023.

FDA. Clinical pharmacology and biopharmaceutics review of dapagliflozin. Center for Drug Evaluation and Research. 07/11/2013;Reference ID: 3423696; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/202293orig1s000clinpharmr.pdf. Accessed 2 Feb 2023.

FDA. Clinical pharmacology and biopharmaceutics review of empagliflozin. Center for Drug Evaluation and Research. 07/18/2014;Reference ID: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/204629Orig1s000ClinPharmR.pdf. Accessed 2 Feb 2023.

Seino Y, Kaku K, Inagaki N, Haneda M, Sasaki T, Fukatsu A, et al. Fifty-two-week long-term clinical study of luseogliflozin as monotherapy in Japanese patients with type 2 diabetes mellitus inadequately controlled with diet and exercise. Endocr J. 2015;62(7):593–603. https://doi.org/10.1507/endocrj.EJ15-0097.

Article  CAS  PubMed  Google Scholar 

Madabushi R, Seo P, Zhao L, Tegenge M, Zhu H. Review: role of model-informed drug development approaches in the lifecycle of drug development and regulatory decision-making. Pharm Res. 2022;39(8):1669–80. https://doi.org/10.1007/s11095-022-03288-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif