A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer

Abolfathi H, et al. The comparison and evaluation of the miR-16, miR-155 and miR-146a expression pattern in the blood of TB and NSCLC patients: a research paper. Gene Reports. 2021;22: 100967.

Article  CAS  Google Scholar 

Abolfathi H, et al. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics. 2021;18(1):49–64.

Article  CAS  PubMed  Google Scholar 

Yu F, et al. Combined effects of lung disease history, environmental exposures, and family history of lung cancer to susceptibility of lung cancer in Chinese non-smokers. Respir Res. 2021;22(1):210.

Article  PubMed  PubMed Central  Google Scholar 

Baratella E, et al. Accuracy of CT-guided core-needle biopsy in diagnosis of thoracic lesions suspicious for primitive malignancy of the lung: a five-year retrospective analysis. Tomography. 2022;8(6):2828–38.

Article  PubMed  PubMed Central  Google Scholar 

Baratella E, et al. Aging-related findings of the respiratory system in chest imaging: pearls and pitfalls. Curr Radiol Rep. 2023;11(1):1–11.

Article  PubMed  Google Scholar 

Jang HJ, et al. Relationship of the lung microbiome with PD-L1 expression and immunotherapy response in lung cancer. Respir Res. 2021;22(1):322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanwal M, Ding X-J, Cao Y. Familial risk for lung cancer. Oncol Lett. 2017;13(2):535–42.

Article  CAS  PubMed  Google Scholar 

Borges HL, Linden R, Wang JYJ. DNA damage-induced cell death: lessons from the central nervous system. Cell Res. 2008;18(1):17–26.

Article  CAS  PubMed  Google Scholar 

Jancík S, et al. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol. 2010;2010:150960–150960.

Article  PubMed  PubMed Central  Google Scholar 

Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9(5):52.

Article  PubMed  Google Scholar 

Metro G, Crinò L. Advances on EGFR mutation for lung cancer. Translational lung cancer research. 2012;1(1):5–13.

PubMed  PubMed Central  Google Scholar 

Noronha V, et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J Clin Oncol. 2020;38(2):124–36.

Article  CAS  PubMed  Google Scholar 

Rivlin N, et al. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2(4):466–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang C, et al. Upregulation and activation of p53 by erastin-induced reactive oxygen species contribute to cytotoxic and cytostatic effects in A549 lung cancer cells. Oncol Rep. 2018;40(4):2363–70.

CAS  PubMed  Google Scholar 

Awad MM, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34(7):721–30.

Article  CAS  PubMed  Google Scholar 

Mollaoglu G, et al. The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the tumor immune microenvironment. Immunity. 2018;49(4):764-779.e9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J, et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature. 2017;546(7656):168–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savli H, et al. TP53, EGFR and PIK3CA gene variations observed as prominent biomarkers in breast and lung cancer by plasma cell-free DNA genomic testing. J Biotechnol. 2019;300:87–93.

Article  CAS  PubMed  Google Scholar 

Gu RH, et al. Diagnostic value of the combined detection of CEA, NSE and IL-18 for lung cancer and their relationship with apoptosis gene Bcl-2. J Biol Regul Homeost Agents. 2020;34(5):1637–46.

CAS  PubMed  Google Scholar 

Li S, et al. Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2. Exp Ther Med. 2018;16(6):4859–64.

CAS  PubMed  PubMed Central  Google Scholar 

Planchard D, et al. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307–16.

Article  CAS  PubMed  Google Scholar 

Ji K, et al. Regulation of apoptosis and radiation sensitization in lung cancer cells via the Sirt1/NF-κB/Smac pathway. Cell Physiol Biochem. 2018;48(1):304–16.

Article  CAS  PubMed  Google Scholar 

Tang X, et al. Sirtuin 3 induces apoptosis and necroptosis by regulating mutant p53 expression in small-cell lung cancer. Oncol Rep. 2020;43(2):591–600.

CAS  PubMed  Google Scholar 

Sevrioukova IF. Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal. 2011;14(12):2545–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amri J, et al. Combination of two miRNAs has a stronger effect on stimulating apoptosis, inhibiting cell growth and increasing erlotinib sensitivity relative to single miRNA in A549 lung cancer cells. Biotechnol Appl Biochem. 2021. https://doi.org/10.1002/bab.2211.

Article  PubMed  Google Scholar 

Li J, et al. miRNA-1284 inhibits cell growth and induces apoptosis of lung cancer cells. Mol Med Rep. 2017;16(3):3049–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amri J, Molaee N, Karami H. Up-regulation of MiRNA-125a-5p inhibits cell proliferation and increases EGFR-TKI induced apoptosis in lung cancer cells. Asian Pac J Cancer Prev. 2019;20(11):3361–7.

Article  CAS  PubMed  Google Scholar 

Ratti M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol. 2020;15(3):261–78.

Article  PubMed  PubMed Central  Google Scholar 

Tomankova T, Petrek M, Kriegova E. Involvement of microRNAs in physiological and pathological processes in the lung. Respir Res. 2010;11(1):159.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan W, et al. MicroRNAs and cancer: key paradigms in molecular therapy (Review). Oncol Lett. 2018;15(3):2735–42.

PubMed  Google Scholar 

Hoballa MH, et al. Identification of a novel intergenic miRNA located between the human DDC and COBL genes with a potential function in cell cycle arrest. Mol Cell Biochem. 2018;444(1–2):179–86.

Article  CAS  PubMed  Google Scholar 

Si W, et al. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 2019;11(1):25.

Article  PubMed  PubMed Central  Google Scholar 

Kaczanowski S, Sajid M, Reece SE. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites. Parasit Vectors. 2011;4(1):44.

Article  PubMed  PubMed Central  Google Scholar 

Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene. 2003;22(53):8543–67.

Article  CAS  PubMed  Google Scholar 

Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev. 2000;64(4):821–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan TJ, et al. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai). 2005;37(11):719–27.

Article  CAS  PubMed  Google Scholar 

Sakamaki K, Satou Y. Caspases: evolutionary aspects of their functions in vertebrates. J Fish Biol. 2009;74(4):727–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif