Prediction of whole body composition utilizing cross-sectional abdominal imaging in pediatrics

Gallagher D, Andres A, Fields DA, Evans WJ, Kuczmarski R, Lowe WL Jr, et al. Body composition measurements from birth through 5 years: challenges, gaps, and existing & emerging technologies—a national institutes of health workshop. Obes Rev. 2020;21:e13033.

Article  PubMed  PubMed Central  Google Scholar 

Gilligan LA, Towbin AJ, Dillman JR, Somasundaram E, Trout AT. Quantification of skeletal muscle mass: sarcopenia as a marker of overall health in children and adults. Pediatr Radiol. 2020;50:455–64.

Article  PubMed  Google Scholar 

Guss CE, McAllister A, Gordon CM. DXA in children and adolescents. J Clin Densitom. 2021;24:28–35.

Article  PubMed  Google Scholar 

Simoni P, Guglielmi R, Aparisi Gomez MP. Imaging of body composition in children. Quant Imaging Med Surg. 2020;10:1661–71.

Article  PubMed  PubMed Central  Google Scholar 

Xia L, Zhao R, Wan Q, Wu Y, Zhou Y, Wang Y, et al. Sarcopenia and adverse health-related outcomes: an umbrella review of meta-analyses of observational studies. Cancer Med. 2020;9:7964–78.

Article  PubMed  PubMed Central  Google Scholar 

Kawakubo N, Kinoshita Y, Souzaki R, Koga Y, Oba U, Ohga S, et al. The influence of sarcopenia on high-risk neuroblastoma. J Surg Res. 2019;236:101–5. https://doi.org/10.1016/j.jss.2018.10.048.

Article  PubMed  Google Scholar 

López JJ, Cooper JN, Albert B, Adler B, King D, Minneci PC. Sarcopenia in children with perforated appendicitis. J Surg Res. 2017;220:1–5. https://doi.org/10.1016/j.jss.2017.05.059.

Article  PubMed  Google Scholar 

Mangus RS, Bush WJ, Miller C, Kubal CA. Severe sarcopenia and increased fat stores in pediatric patients with liver, kidney, or intestine failure. J Pediatr Gastroenterol Nutr. 2017;65:579–83.

Article  PubMed  Google Scholar 

Oh J, Shin WJ, Jeong D, Yun TJ, Park CS, Choi ES, et al. Low muscle mass as a prognostic factor for early postoperative outcomes in pediatric patients undergoing the fontan operation: a retrospective cohort study. J Clin Med. 2019;8:19.

Article  Google Scholar 

Ooi PH, Thompson-Hodgetts S, Pritchard-Wiart L, Gilmour SM, Mager DR. Pediatric sarcopenia: a paradigm in the overall definition of malnutrition in children? J Parenter Enter Nutr. 2020;44:407–18.

Article  Google Scholar 

Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17:527–58.

Article  CAS  PubMed  Google Scholar 

Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998;85:115–22.

Article  CAS  PubMed  Google Scholar 

Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. J Parenter Enter Nutr. 2014;38:940–53.

Article  Google Scholar 

Kim J, Heshka S, Gallagher D, Kotler DP, Mayer L, Albu J, et al. Intermuscular adipose tissue-free skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in adults. J Appl Physiol. 2004;97:655–60.

Article  PubMed  Google Scholar 

Kim J, Shen W, Gallagher D, Jones A Jr, Wang Z, Wang J, et al. Total-body skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in children and adolescents. Am J Clin Nutr. 2006;84:1014–20.

Article  CAS  PubMed  Google Scholar 

Baker ST, Strauss BJ, Prendergast LA, Panagiotopoulos S, Thomas GE, Vu T, et al. Estimating dual-energy X-ray absorptiometry-derived total body skeletal muscle mass using single-slice abdominal magnetic resonance imaging in obese subjects with and without diabetes: a pilot study. Eur J Clin Nutr. 2012;66:628–32.

Article  CAS  PubMed  Google Scholar 

Faron A, Luetkens JA, Schmeel FC, Kuetting DLR, Thomas D, Sprinkart AM. Quantification of fat and skeletal muscle tissue at abdominal computed tomography: associations between single-slice measurements and total compartment volumes. Abdom Radiol. 2019;44:1907–16.

Article  Google Scholar 

Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol, Nutr, Metab. 2008;33:997–1006. https://doi.org/10.1139/H08-075.

Article  PubMed  Google Scholar 

Schweitzer L, Geisler C, Pourhassan M, Braun W, Gluer CC, Bosy-Westphal A, et al. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr. 2015;102:58–65.

Article  CAS  PubMed  Google Scholar 

Schwenzer NF, Machann J, Schraml C, Springer F, Ludescher B, Stefan N, et al. Quantitative analysis of adipose tissue in single transverse slices for estimation of volumes of relevant fat tissue compartments: a study in a large cohort of subjects at risk for type 2 diabetes by MRI with comparison to anthropometric data. Investig Radiol. 2010;45:788–94.

Article  Google Scholar 

Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, et al. Visceral adipose tissue: relations between single-slice areas and total volume. Am J Clin Nutr. 2004;80:271–8.

Article  CAS  PubMed  Google Scholar 

Das SK. Body composition measurement in severe obesity. Curr Opin Clin Nutr Metab Care. 2005;8:602–6.

Article  PubMed  Google Scholar 

Helba M, Binkovitz LA. Pediatric body composition analysis with dual-energy X-ray absorptiometry. Pediatr Radiol. 2009;39:647–56.

Article  PubMed  Google Scholar 

Nievelstein RA, van Dam IM, van der Molen AJ. Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol. 2010;40:1324–44.

Article  PubMed  PubMed Central  Google Scholar 

Irving BA, Weltman JY, Brock DW, Davis CK, Gaesser GA, Weltman A. NIH ImageJ and Slice-O-Matic computed tomography imaging software to quantify soft tissue. Obesity. 2007;15:370–6. https://doi.org/10.1038/oby.2007.573.

Article  PubMed  Google Scholar 

Aubrey J, Esfandiari N, Baracos VE, Buteau FA, Frenette J, Putman CT, et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. 2014;210:489–97. https://doi.org/10.1111/apha.12224.

Article  CAS  Google Scholar 

Shen W, Chen J, Kwak S, Punyanitya M, Heymsfield SB. Between-slice intervals in quantification of adipose tissue and muscle in children. Int J Pediatr Obes. 2011;6:149–56.

Article  PubMed  Google Scholar 

Dabiri S, Popuri K, Ma C, Chow V, Feliciano EMC, Caan BJ, et al. Deep learning method for localization and segmentation of abdominal CT. Comput Med Imaging Graph. 2020;85:101776 https://doi.org/10.1016/j.compmedimag.2020.101776.

Article  PubMed  PubMed Central  Google Scholar 

Magudia K, Bridge CP, Bay CP, Babic A, Fintelmann FJ, Troschel FM, et al. Population-scale CT-based body composition analysis of a large outpatient population using deep learning to derive age-, sex-, and race-specific reference curves. Radiology. 2021;298:319–29.

Article  PubMed  Google Scholar 

Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97:2333–8.

Article  PubMed  Google Scholar 

Borrud LG, Flegal KM, Looker AC, Everhart JE, Harris TB, Shepherd JA. Body composition data for individuals 8 years of age and older: U.S. population, 1999–2004. Vital & Health Statistics—Series 11: Data from the National Health Survey 2010; 250:1–87.

Roberts KC, Shields M, de Groh M, Aziz A, Gilbert JA. Overweight and obesity in children and adolescents: results from the 2009 to 2011 Canadian Health Measures Survey. Health Rep. 2012;23:37–41.

PubMed  Google Scholar 

Shachar SS, Deal AM, Weinberg M, Williams GR, Nyrop KA, Popuri K, et al. Body composition as a predictor of toxicity in patients receiving anthracycline and taxane-based chemotherapy for early-stage breast cancer. Clin Cancer Res. 2017;23:3537–43. https://doi.org/10.1158/1078-0432.Ccr-16-2266.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grutters LA, Pennings JP, Bruggink JLM, Viddeleer AR, Verkade HJ, de Kleine RHJ, et al. Body composition of infants with biliary atresia: anthropometric measurements and computed tomography-based body metrics. J Pediatr Gastroenterol Nutr. 2020;71:440–5.

Article  CAS  PubMed  Google Scholar 

Sala A, Rossi E, Antillon F, Molina AL, de Maselli T, Bonilla M, et al. Nutritional status at diagnosis is related to clinical outcomes in children and adolescents with cancer: a perspective from Central America. Eur J Cancer. 2011;48:243–52.

Article  PubMed  Google Scholar 

Zimmermann K, Ammann RA, Kuehni CE, De Geest S, Cignacco E. Malnutrition in pediatric patients with cancer at diagnosis and throughout therapy: a multicenter cohort study. Pediatr Blood Cancer. 2013;60:642–9. https://doi.org/10.1002/pbc.24409

Article  PubMed  Google Scholar 

Murphy AJ, White M, Davies PS. Body composition of children with cancer. Am J Clin Nutr. 2010;92:55–60.

Article  CAS  PubMed  Google Scholar 

Murphy AJ, White M, Elliott SA, Lockwood L, Hallahan A, Davies PS. Body composition of children with cancer during treatment and in survivorship. Am J Clin Nutr. 2015;102:891–6.

Article  CAS  PubMed  Google Scholar 

Harskamp-van Ginkel MW, Hill KD, Becker KC, Testoni D, Cohen-Wolkowiez M, Gonzalez D, et al. Drug dosing and pharmacokinetics in children with obesity: a systematic review. JAMA Pediatr. 2015;169:678–85. https://doi.org/10.1001/jamapediatrics.2015.132.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif