New insight of metabolomics in ocular diseases in the context of 3P medicine

Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–9. https://doi.org/10.1038/nrm.2016.25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019;20:353–67. https://doi.org/10.1038/s41580-019-0108-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar A, Misra BB. Challenges and opportunities in cancer metabolomics. Proteomics. 2019;19:e1900042. https://doi.org/10.1002/pmic.201900042.

Article  CAS  PubMed  Google Scholar 

McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. cardiovascular metabolomics. Circ Res. 2018;122:1238–58. https://doi.org/10.1161/circresaha.117.311002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laíns I, Gantner M, Murinello S, Lasky-Su JA, Miller JW, Friedlander M, Husain D. Metabolomics in the study of retinal health and disease. Prog Retin Eye Res. 2019;69:57–79. https://doi.org/10.1016/j.preteyeres.2018.11.002.

Article  CAS  PubMed  Google Scholar 

Luan H, Wang X, Cai Z. Mass spectrometry-based metabolomics: targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. Mass Spectrom Rev. 2019;38:22–33. https://doi.org/10.1002/mas.21553.

Article  CAS  PubMed  Google Scholar 

Guasch-Ferré M, Hruby A, Toledo E, Clish CB, Martínez-González MA, Salas-Salvadó J, Hu FB. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39:833–46. https://doi.org/10.2337/dc15-2251.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Letertre MPM, Dervilly G, Giraudeau P. Combined nuclear magnetic resonance spectroscopy and mass spectrometry approaches for metabolomics. Anal Chem. 2021;93:500–18. https://doi.org/10.1021/acs.analchem.0c04371.

Article  CAS  PubMed  Google Scholar 

Marshall DD, Powers R. Beyond the paradigm: combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc. 2017;100:1–16. https://doi.org/10.1016/j.pnmrs.2017.01.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopes AS, Cruz EC, Sussulini A, Klassen A. Metabolomic strategies involving mass spectrometry combined with liquid and gas chromatography. Adv Exp Med Biol. 2017;965:77–98. https://doi.org/10.1007/978-3-319-47656-8_4.

Article  CAS  PubMed  Google Scholar 

Zhong P, Wei X, Li X, Wei X, Wu S, Huang W, Koidis A, Xu Z, Lei H. Untargeted metabolomics by liquid chromatography-mass spectrometry for food authentication: a review. Compr Rev Food Sci Food Saf. 2022;21:2455–88. https://doi.org/10.1111/1541-4337.12938.

Article  PubMed  Google Scholar 

Tan SZ, Begley P, Mullard G, Hollywood KA, Bishop PN. Introduction to metabolomics and its applications in ophthalmology. Eye (Lond). 2016;30:773–83. https://doi.org/10.1038/eye.2016.37.

Article  CAS  PubMed  Google Scholar 

Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald J, Ewald JC, Fraser PD, Giavalisco P, Hall RD, Heinemann M, Link H, Luo J, Neumann S, Nielsen J, Perez de Souza L, Saito K, Sauer U, Schroeder FC, Schuster S, Siuzdak G, Skirycz A, Sumner LW, Snyder MP, Tang H, Tohge T, Wang Y, Wen W, Wu S, Xu G, Zamboni N, Fernie AR. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods. 2021;18:747–56. https://doi.org/10.1038/s41592-021-01197-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, Krapfenbauer K, Mozaffari MS, Costigliola V. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23. https://doi.org/10.1186/s13167-016-0072-4.

Article  PubMed  PubMed Central  Google Scholar 

Barba I, Garcia-Ramírez M, Hernández C, Alonso MA, Masmiquel L, García-Dorado D, Simó R. Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci. 2010;51:4416–21. https://doi.org/10.1167/iovs.10-5348.

Article  PubMed  Google Scholar 

Haines NR, Manoharan N, Olson JL, D’Alessandro A, Reisz JA. Metabolomics analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment. J Proteome Res. 2018;17:2421–7. https://doi.org/10.1021/acs.jproteome.8b00169.

Article  CAS  PubMed  Google Scholar 

Paris LP, Johnson CH, Aguilar E, Usui Y, Cho K, Hoang LT, Feitelberg D, Benton HP, Westenskow PD, Kurihara T, Trombley J, Tsubota K, Ueda S, Wakabayashi Y, Patti GJ, Ivanisevic J, Siuzdak G, Friedlander M. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics. 2016;12:15. https://doi.org/10.1007/s11306-015-0877-5.

Article  CAS  PubMed  Google Scholar 

Tomita Y, Cagnone G, Fu Z, Cakir B, Kotoda Y, Asakage M, Wakabayashi Y, Hellström A, Joyal JS, Talukdar S, Smith LEH, Usui Y. Vitreous metabolomics profiling of proliferative diabetic retinopathy. Diabetologia. 2021;64:70–82. https://doi.org/10.1007/s00125-020-05309-y.

Article  CAS  PubMed  Google Scholar 

Lin AL, Roman RJ, Regan KA, Bolch CA, Chen CJ, Iyer SSR. Eicosanoid profiles in the vitreous humor of patients with proliferative diabetic retinopathy. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21207451.

Zhao T, Wang Y, Guo X, Li H, Jiang W, Xiao Y, Deng B, Sun Y. Altered oxylipin levels in human vitreous indicate imbalance in pro-/anti-inflammatory homeostasis in proliferative diabetic retinopathy. Exp Eye Res. 2022;214:108799. https://doi.org/10.1016/j.exer.2021.108799.

Article  CAS  PubMed  Google Scholar 

Wang H, Fang J, Chen F, Sun Q, Xu X, Lin SH, Liu K. Metabolomic profile of diabetic retinopathy: a GC-TOFMS-based approach using vitreous and aqueous humor. Acta Diabetol. 2020;57:41–51. https://doi.org/10.1007/s00592-019-01363-0.

Article  PubMed  Google Scholar 

Jin H, Zhu B, Liu X, Jin J, Zou H. Metabolic characterization of diabetic retinopathy: an (1)H-NMR-based metabolomic approach using human aqueous humor. J Pharm Biomed Anal. 2019;174:414–21. https://doi.org/10.1016/j.jpba.2019.06.013.

Article  CAS  PubMed  Google Scholar 

Chen L, Cheng CY, Choi H, Ikram MK, Sabanayagam C, Tan GS, Tian D, Zhang L, Venkatesan G, Tai ES, Wang JJ, Mitchell P, Cheung CM, Beuerman RW, Zhou L, Chan EC, Wong TY. Plasma metabonomic profiling of diabetic retinopathy. Diabetes. 2016;65:1099–108. https://doi.org/10.2337/db15-0661.

Article  CAS  PubMed  Google Scholar 

Zhu XR, Yang FY, Lu J, Zhang HR, Sun R, Zhou JB, Yang JK. Plasma metabolomic profiling of proliferative diabetic retinopathy. Nutr Metab. 2019;16:37. https://doi.org/10.1186/s12986-019-0358-3.

Article  Google Scholar 

Sumarriva K, Uppal K, Ma C, Herren DJ, Wang Y, Chocron IM, Warden C, Mitchell SL, Burgess LG, Goodale MP, Osborn MP, Ferreira AJ, Law JC, Cherney EF, Jones DP, Brantley MA Jr. Arginine and carnitine metabolites are altered in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2019;60:3119–26. https://doi.org/10.1167/iovs.19-27321.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peters KS, Rivera E, Warden C, Harlow PA, Mitchell SL, Calcutt MW, Samuels DC, Brantley MA Jr. Plasma arginine and citrulline are elevated in diabetic retinopathy. Am J Ophthalmol. 2022;235:154–62. https://doi.org/10.1016/j.ajo.2021.09.021.

Article  CAS  PubMed  Google Scholar 

Peng L, Sun B, Liu M, Huang J, Liu Y, Xie Z, He J, Chen L, Wang D, Zhu Y, Zhang X, Ai D. Plasma metabolic profile reveals PGF2α protecting against non-proliferative diabetic retinopathy in patients with type 2 diabetes. Biochem Biophys Res Commun. 2018;496:1276–83. https://doi.org/10.1016/j.bbrc.2018.01.188.

Article  CAS  PubMed  Google Scholar 

Curovic VR, Suvitaival T, Mattila I, Ahonen L, Trošt K, Theilade S, Hansen TW, Legido-Quigley C, Rossing P. Circulating metabolites and lipids are associated to diabetic retinopathy in individuals with type 1 diabetes. Diabetes. 2020;69:2217–26. https://doi.org/10.2337/db20-0104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han G, Wei P, He M, Teng H. Glucose metabolic characterization of human aqueous humor in relation to wet age-related macular degeneration. Invest Ophthalmol Vis Sci. 2020;61:49. https://doi.org/10.1167/iovs.61.3.49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han G, Wei P, He M, Teng H, Chu Y. Metabolomic profiling of the aqueous humor in patients with wet age-related macular degeneration using UHPLC-MS/MS. J Proteome Res. 2020;19:2358–66. https://doi.org/10.1021/acs.jproteome.0c00036.

Article  CAS  PubMed  Google Scholar 

Laíns I, Kelly RS, Miller JB, Silva R, Vavvas DG, Kim IK, Murta JN, Lasky-Su J, Miller JW, Husain D. Human plasma metabolomics study across all stages of age-related macular degeneration identifies potential lipid biomarkers. Ophthalmology. 2018;125:245–54. https://doi.org/10.1016/j.ophtha.2017.08.008.

Article  PubMed  Google Scholar 

Acar İE, Lores-Motta L, Colijn JM, Meester-Smoor MA, Verzijden T, Cougnard-Gregoire A, Ajana S, Merle BMJ, de Breuk A, Heesterbeek TJ, van den Akker E, Daha MR, Claes B, Pauleikhoff D, Hense HW, van Duijn CM, Fauser S, Hoyng CB, Delcourt C, Klaver CCW, Galesloot TE, den Hollander AI. Integrating metabolomics, genomics, and disease pathways in age-related macular degeneration: the EYE-RISK Consortium. Ophthalmology. 2020;127:1693–709. https://doi.org/10.1016/j.ophtha.2020.06.020.

Article  PubMed  Google Scholar 

Mitchell SL, Uppal K, Williamson SM, Liu K, Burgess LG, Tran V, Umfress AC, Jarrell KL, Cooke Bailey JN, Agarwal A, Pericak-Vance M, Haines JL, Scott WK, Jones DP, Brantley MA Jr. The carnitine shuttle pathway is altered in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2018;59:4978–85. https://doi.org/10.1167/iovs.18-25137.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif