The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease

Strollo SE, Adjemian J, Adjemian MK, Prevots DR. The burden of pulmonary nontuberculous mycobacterial disease in the United States. Ann Am Thorac Soc. 2015;12(10):1458–64.

Article  PubMed  PubMed Central  Google Scholar 

Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72(Suppl 2):ii1–64.

Article  PubMed  Google Scholar 

Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416.

Article  CAS  PubMed  Google Scholar 

Thomson RM. Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg Infect Dis. 2010;16(10):1576.

Article  PubMed  PubMed Central  Google Scholar 

Johnson MM, Odell JA. Nontuberculous mycobacterial pulmonary infections. J Thorac Dis. 2014;6(3):210.

PubMed  PubMed Central  Google Scholar 

Musaddaq B, Cleverley JR. Diagnosis of non-tuberculous mycobacterial pulmonary disease (NTM-PD): modern challenges. Br J Radiol. 2020;92(1106):20190768.

Article  Google Scholar 

Henkle E, Winthrop KL. Nontuberculous mycobacteria infections in immunosuppressed hosts. Clin Chest Med. 2015;36(1):91–9.

Article  PubMed  Google Scholar 

Faverio P, Stainer A, Bonaiti G, Zucchetti SC, Simonetta E, Lapadula G, et al. Characterizing non-tuberculous mycobacteria infection in bronchiectasis. Int J Mol Sci. 2016;17(11):1913.

Article  PubMed  PubMed Central  Google Scholar 

Rawson TM, Abbara A, Kranzer K, Ritchie A, Milburn J, Brown T, et al. Factors which influence treatment initiation for pulmonary non-tuberculous mycobacterium infection in HIV negative patients; a multicentre observational study. Respir Med. 2016;120:101–8.

Article  PubMed  Google Scholar 

Egelund EF, Fennelly KP, Peloquin CA. Medications and monitoring in nontuberculous mycobacteria infections. Clin Chest Med. 2015;36(1):55–66.

Article  PubMed  Google Scholar 

Lake MA, Ambrose LR, Lipman MC, Lowe DM. ‘” Why me, why now?” Using clinical immunology and epidemiology to explain who gets nontuberculous mycobacterial infection. BMC Med. 2016;14(1):54.

Article  PubMed  PubMed Central  Google Scholar 

Wu UI, Holland SM. Host susceptibility to non-tuberculous mycobacterial infections. Lancet Infect Dis. 2015;15(8):968–80.

Article  CAS  PubMed  Google Scholar 

Aleyd E, van Hout MW, Ganzevles SH, Hoeben KA, Everts V, Bakema JE, et al. IgA enhances NETosis and release of neutrophil extracellular traps by polymorphonuclear cells via Fcα receptor I. J Immunol. 2014;192(5):2374–83.

Article  CAS  PubMed  Google Scholar 

Eum S-Y, Kong J-H, Hong M-S, Lee Y-J, Kim J-H, Hwang S-H, et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest. 2010;137(1):122–8.

Article  PubMed  Google Scholar 

Malcolm KC, Caceres SM, Pohl K, Poch KR, Bernut A, Kremer L, et al. Neutrophil killing of Mycobacterium abscessus by intra-and extracellular mechanisms. PLoS ONE. 2018;13(4):e0196120.

Article  PubMed  PubMed Central  Google Scholar 

Lowe DM, Bandara AK, Packe GE, Barker RD, Wilkinson RJ, Griffiths CJ, et al. Neutrophilia independently predicts death in tuberculosis. Eur Respir J. 2013;42(6):1752–7.

Article  PubMed  PubMed Central  Google Scholar 

Hickey MJ, Kubes P. Intravascular immunity: the host–pathogen encounter in blood vessels. Nat Rev Immunol. 2009;9(5):364–75.

Article  CAS  PubMed  Google Scholar 

Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–89.

Article  CAS  PubMed  Google Scholar 

Vieira OV, Botelho RJ, Grinstein S. Phagosome maturation: aging gracefully. Biochem J. 2002;366(3):689–704.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003;5(14):1317–27.

Article  CAS  PubMed  Google Scholar 

Sheppard FR, Kelher MR, Moore EE, McLaughlin NJ, Banerjee A, Silliman CC. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol. 2005;78(5):1025–42.

Article  CAS  PubMed  Google Scholar 

Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–70.

Article  CAS  PubMed  Google Scholar 

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galkina E, Kondratenko I, Bologov A. Mycobacterial Infections in Primary Immunodeficiency Patients. New York: Springer New York; 2007.

Book  Google Scholar 

Andrews T, Sullivan KE. Infections in patients with inherited defects in phagocytic function. Clin Microbiol Rev. 2003;16(4):597–621.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loukides S, Bouros D, Papatheodorou G, Lachanis S, Panagou P, Siafakas NM. Exhaled H2O2 in steady-state bronchiectasis: relationship with cellular composition in induced sputum, spirometry, and extent and severity of disease. Chest. 2002;121(1):81–7.

Article  CAS  PubMed  Google Scholar 

Silva MT, Silva MN, Appelberg R. Neutrophil-macrophage cooperation in the host defence against mycobacterial infections. Microb Pathog. 1989;6(5):369–80.

Article  CAS  PubMed  Google Scholar 

Lowe DM, Redford PS, Wilkinson RJ, O’Garra A, Martineau AR. Neutrophils in tuberculosis: friend or foe? Trends Immunol. 2012;33(1):14–25.

Article  CAS  PubMed  Google Scholar 

Ong CW, Elkington PT, Brilha S, Ugarte-Gil C, Tome-Esteban MT, Tezera LB, et al. Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis. PLoS Pathog. 2015. https://doi.org/10.1371/journal.ppat.1004917.

Article  PubMed  PubMed Central  Google Scholar 

Jones GS, Amirault HJ, Andersen BR. Killing of Mycobacterium tuberculosis by neutrophils: a nonoxidative process. J Infect Dis. 1990;162(3):700–4.

Article  CAS  PubMed  Google Scholar 

Majeed M, Perskvist N, Ernst JD, Orselius K, Stendahl O. Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain ofMycobacterium tuberculosisin human neutrophils. Microb Pathog. 1998;24(5):309–20.

Article  CAS  PubMed  Google Scholar 

Miralda I, Klaes CK, Graham JE, Uriarte SM. Human neutrophil granule exocytosis in response to Mycobacterium smegmatis. Pathogens. 2020;9(2):123.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenhart-Pendergrass P, Malcolm K, Wheeler E, Rysavy N, Poch K, Caceres S, et al. Opsonization promotes efficient Mycobacterium avium killing by human neutrophils. D6 D006 CLINICAL AND TRANSLATIONAL ADVANCES IN TB AND NTM: American Thoracic Society; 2021. p. A1193-A.

Feng CG, Scanga CA, Collazo-Custodio CM, Cheever AW, Hieny S, Caspar P, et al. Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)-and TLR4-deficient animals. J Immunol. 2003;171(9):4758–64.

Article  CAS  PubMed  Google Scholar 

Petrofsky M, Bermudez LE. Neutrophils fromMycobacterium avium-infected mice produce TNF-α, IL-12, and IL-1β and have a putative role in early host response. Clin Immunol. 1999;91(3):354–8.

Article  CAS  PubMed  Google Scholar 

Kondratieva E, Logunova N, Majorov K, Averbakh M Jr, Apt A. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PloS one. 2010. https://doi.org/10.1371/journal.pone.0010515.

Article  PubMed  PubMed Central  Google Scholar 

Fäldt J, Dahlgren C, Ridell M. Difference in neutrophil cytokine production induced by pathogenic and non-pathogenic mycobacteria. APMIS. 2002;110(9):593–600.

Article  PubMed  Google Scholar 

Appelberg R, Castro AG, Gomes S, Pedrosa J, Silva MT. Susceptibility of beige mice to Mycobacterium avium: role of neutrophils. Infect Immun. 1995;63(9):3381–7.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif