pH-dependent solubility prediction for optimized drug absorption and compound uptake by plants

Amidon GL, Lennernas H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

Article  CAS  PubMed  Google Scholar 

Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54:355–366

Article  CAS  PubMed  Google Scholar 

Zhang Y, Lorsbach BA, Castetter S, Lambert WT, Kister J, Wang NX, Klittich CJR, Roth J, Sparks TC, Loso MR (2018) Physicochemical property guidelines for modern agrochemicals. Pest Manag Sci 74:1979–1991

Article  CAS  Google Scholar 

Manallack DT (2027) The acid/base profile of agrochemicals. SAR QSAR Environ Res 28:621–628

Article  Google Scholar 

Comer JEA (2003) In drug bioavailability, vol. 1, chapter 2. Wiley-VCH, New York, pp 21–45

Book  Google Scholar 

Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46:183–196

CAS  PubMed  Google Scholar 

Nowak M, Selmar D (2018) Cellular distribution of alkaloids and their translocation via phloem and xylem: the importance of compartment pH. Plant Biol J 18:879–882

Article  Google Scholar 

Bergstroem CAS, Luthman K, Artursson P (2004) Accuracy of calculated pH-dependent aqueous drug solubility. Eur J Pharm Sci 22:387–398

Article  Google Scholar 

Loh ZH, Samanta AK, Heng PWS (2015) Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 10:255–274

Article  Google Scholar 

Veseli A, Zakelj S, Kristl A (2019) A review of methods for solubility determination in biopharmaceutical drug characterization. Drug Devel Indust Pharm 45:1717–1724

Article  CAS  Google Scholar 

Alsenz J, Kansy M (2007) High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev 59:546–567

Article  CAS  PubMed  Google Scholar 

Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman J (1998) Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res 15:698–705

Article  CAS  PubMed  Google Scholar 

Galia E, Nicolaides E, Reppas C, Dressman J (1996) New media discriminate dissolution of poorly soluble drugs. Pharm Res 13:262

Google Scholar 

Kanikkannan N (2018) Technologies to improve the solubility, dissolution and bioavailability of poorly soluble drugs. J Anal Pharm Res 7:198

Article  Google Scholar 

Delaney JS (2005) Predicting aqueous solubility from structure. Drug Discov Today 10:289–295

Article  CAS  PubMed  Google Scholar 

Balakin KV, Savchuk NP, Tetko IV (2006) In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr Med Chem 13:223–241

Article  CAS  PubMed  Google Scholar 

Faller B, Ertl P (2007) Computational approaches to determine drug solubility. Adv Drug Deliv Rev 59:533–545

Article  CAS  PubMed  Google Scholar 

Göller AH, Hennemann M, Keldenich J, Clark T (2006) In silico prediction of buffer solubility based on quantum-mechanical and HQSAR- and topology-based descriptors. J Chem Inf Model 46:648–658

Article  PubMed  Google Scholar 

Schwaighofer A, Schroeter T, Mika S, Laub J, ter Laak A, Sülzle D, Ganzer U, Heinrich N (2007) Accurate solubility prediction with error bars for electrolytes: a machine learning approach. J Chem Inf Model 47:407–424

Article  CAS  PubMed  Google Scholar 

Schroeter T, Schwaighofer A, Mika S, ter Laak A, Sülzle D, Ganzer U, Heinrich N, Müller KR (2007) Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules. J Comput Aided Mol Des 21:651–664

Article  CAS  PubMed  Google Scholar 

Montanari F, Kuhnke L, ter Laak A, Clevert DA (2020) Modeling physico-chemical ADMET endpoints with multitask graph convolutional networks. Molecules 25:44–56

Article  CAS  Google Scholar 

Galarza LM, Gomez LAT Prediction of pH-dependent aqueous solubility of druglike molecules of different chemical behavior. MOL2NET 03, International Conference Series on Multidisciplinary Sciences. (2017)

Aleksic S, Seeliger D, Brown JB (2021) ADMET predictability at Boehringer Ingelheim: state-of-the- art, and do bigger datasets or algorithms make a difference? Mol Inf 40:2100113

Google Scholar 

Hasselbalch KA (1916) Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebunden Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem Z 78:112–144

CAS  Google Scholar 

Bergström CAS, Luthman K, Artursson P (2004) Accuracy of calculated pH-dependent aqueous drug solubility. Eur J Pharm Sci 22:387–398

Article  PubMed  Google Scholar 

Hansen NT, Kouskoumvekaki I, Jorgensen FS, Brunak S, Jonsdottir SO (2006) Prediction of pH-dependent aqueous solubility of druglike molecules. J Chem Inf Model 46:2601–2609

Article  CAS  PubMed  Google Scholar 

ACD/Percepta, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com (2022). Accessed 15 Feb 2023.

ADMET Predictor, version 7.1; Simulations Plus, Inc.: Lancaster, CA (2014)

Pipeline Pilot, version 21.2.0.2574, server version 21.2.0.2575; Dassault Systemes BIOVIA Corp.: San Diego, CA (2020)

National Center for Biotechnology Information PubChem Bioassay Record for AID 1996, Aqueous Solubility from MLSMR Stock Solutions, Source: Burnham Center for Chemical Genomics. https://pubchem.ncbi.nlm.nih.gov/bioassay/1996 (2022). Accessed 1 Dec 2022

https://www.ebi.ac.uk/chembl/document_report_card/CHEMBL3301361/ (2023). Accessed 15 Feb 2023.

Wenlock MC, Austin RP, Potter T, Barton P (2011) A highly automated assay for determining the aqueous equilibrium solubility of drug discovery compounds. J Ass Lab Autom 16(276):284

Google Scholar 

Kramer C, Heinisch T, Fligge T, Beck B, Clark T (2009) A consistent dataset of kinetic solubilities for early-phase drug discovery. Chem Med Chem 4:1529–1536

Article  CAS  PubMed  Google Scholar 

Sieger P, Cui Y, Scheuer S (2017) pH-dependent solubility and permeability profiles: a useful tool for prediction of oral bioavailability. Eur J Pharm Sci 195:82–90

Article  Google Scholar 

Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754

Article  CAS  PubMed  Google Scholar 

Sosnin S, Karlov D, Tetko IV, Fedorov MV (2019) Comparative study of multitask toxicity modeling on a broad chemical space. J Chem Inf Model 59:1062–1072

Article  CAS  PubMed  Google Scholar 

Alexander DLJ, Tropsha A, Winkler DA (2015) Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J Chem Inf Model 55:1316–1322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yingqing RY, Yalkowsky SH (2001) Prediction of drug solubility by the General Solubility Equation (GSE). J Chem Inf Comput Sci 41:354–357

Article  Google Scholar 

Dahl GE, Jaitly N, Salakhutdinov R Multi-task Neural Networks for QSAR Predictions, arXiv:1406.1231 (2014). Accessed 15 Feb 2023.

Kearnes S, Goldman B, Pande V Modeling Industrial ADMET Data with Multitask Networks, arXiv:1606.08793 (2016). Accessed 15 Feb 2023.

Winter R, Montanari F, Noe F, Clevert DA (2019) Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem Sci 10:1692–1701

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif