The effect of urethane and MS-222 anesthesia on the electric organ discharge of the weakly electric fish Apteronotus leptorhynchus

Attili S, Hughes SM (2014) Anaesthetic tricaine acts preferentially on neural voltage-gated sodium channels and fails to block directly evoked muscle contraction. PLoS ONE 9:e103751. https://doi.org/10.1371/journal.pone.0103751

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awal MR, Wirak GS, Gabel CV, Connor CW (2020) Collapse of global neuronal states in Caenorhabditis elegans under isoflurane anesthesia. Anesthesiology 133:133–144. https://doi.org/10.1097/ALN.0000000000003304

Article  CAS  PubMed  Google Scholar 

Bass AH (1986) Electric organs revisited: evolution of a vertebrate communication and orientation organ. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 13–70

Google Scholar 

Bowery NG, Dray A (1978) Reversal of the action of amino acid antagonists by barbiturates and other hypnotic drugs. Br J Pharmacol 63:197–215. https://doi.org/10.1111/j.1476-5381.1978.tb07790.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caputi AA (1999) The electric organ discharge of pulse gymnotiforms: the transformation of a simple impulse into a complex spatio-temporal electromotor pattern. J Exp Biol 202:1229–1241. https://doi.org/10.1242/jeb.202.10.1229

Article  CAS  PubMed  Google Scholar 

Daló NL, Hackman JC (2013) The anesthetic urethane blocks excitatory amino acid responses but not GABA responses in isolated frog spinal cords. J Anesth 27:98–103. https://doi.org/10.1007/s00540-012-1466-7

Article  PubMed  Google Scholar 

Dye J (1988) An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish, Apteronotus. J Comp Physiol A 163:445–458. https://doi.org/10.1007/BF00604899

Article  CAS  PubMed  Google Scholar 

Dye J (1991) Ionic and synaptic mechanisms underlying a brainstem oscillator: an in vitro study of the pacemaker nucleus of Apteronotus. J Comp Physiol A 168:521–532

Article  CAS  PubMed  Google Scholar 

Dye J, Heiligenberg W (1987) Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behaviors. J Comp Physiol A 161:187–200

Article  CAS  PubMed  Google Scholar 

Dye JC, Meyer JH (1986) Central control of the electric organ discharge in weakly electric fish. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 71–102

Google Scholar 

Dye J, Heiligenberg W, Keller CH, Kawasaki M (1989) Different classes of glutamate receptors mediate distinct behaviors in a single brainstem nucleus. Proc Natl Acad Sci U S A 86:8993–8997. https://doi.org/10.1073/pnas.86.22.8993

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elekes K, Szabo T (1985) Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects. Exp Brain Res 60:509–520

Article  CAS  PubMed  Google Scholar 

Enger PS, Szabo T (1968) Effect of temperature on the discharge rates of the electric organ of some gymnotids. Comp Biochem Physiol 27:625–627. https://doi.org/10.1016/0010-406x(68)90263-6

Article  CAS  PubMed  Google Scholar 

Engler G, Zupanc GKH (2001) Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 187:747–756. https://doi.org/10.1007/s00359-001-0248-8

Article  CAS  PubMed  Google Scholar 

Engler G, Fogarty CM, Banks JR, Zupanc GKH (2000) Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: a biophysical and behavioral analysis. J Comp Physiol A 186:645–660. https://doi.org/10.1007/s003590000118

Article  CAS  PubMed  Google Scholar 

Fang K, Tang Y, Zhang B, Fang G (2022) Neural activities in music frogs reveal call variations and phylogenetic relationships within the genus Nidirana. Commun Biol 5:550. https://doi.org/10.1038/s42003-022-03504-8

Article  PubMed  PubMed Central  Google Scholar 

Firestone LL, Sauter JF, Braswell LM, Miller KW (1986) Actions of general anesthetics on acetylcholine receptor-rich membranes from Torpedo californica. Anesthesiology 64:694–702. https://doi.org/10.1097/00000542-198606000-00004

Article  CAS  PubMed  Google Scholar 

Flecknell P (2009) Laboratory animal anaesthesia, 3rd edn. Academic Press, Amsterdam

Google Scholar 

Frazier DT, Narahashi T (1975) Tricaine (MS-222): effects on ionic conductances of squid axon membranes. Eur J Pharmacol 33:313–317. https://doi.org/10.1016/0014-2999(75)90175-2

Article  CAS  PubMed  Google Scholar 

Gamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA (2018) Fenestrations control resting-state block of a voltage-gated sodium channel. Proc Natl Acad Sci U S A 115:13111–13116. https://doi.org/10.1073/pnas.1814928115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hara K, Harris RA (2002) The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels. Anesth Analg 94:313–318. https://doi.org/10.1097/00000539-200202000-00015

Article  CAS  PubMed  Google Scholar 

Hartman D, Lehotzky D, Ilieş I, Levi M, Zupanc GKH (2021) Modeling of sustained spontaneous network oscillations of a sexually dimorphic brainstem nucleus: the role of potassium equilibrium potential. J Comput Neurosci 49:419–439. https://doi.org/10.1007/s10827-021-00789-2

Article  PubMed  Google Scholar 

Hedrick MS, Winmill RE (2003) Excitatory and inhibitory effects of tricaine (MS-222) on fictive breathing in isolated bullfrog brain stem. Am J Physiol Regul Integr Comp Physiol 284:R405–R412. https://doi.org/10.1152/ajpregu.00418.2002

Article  CAS  PubMed  Google Scholar 

Heiligenberg W, Metzner W, Wong CJH, Keller CH (1996) Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neuronal substrates. J Comp Physiol A 179:653–674. https://doi.org/10.1007/BF00216130

Article  CAS  PubMed  Google Scholar 

Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:497–515. https://doi.org/10.1085/jgp.69.4.497

Article  CAS  PubMed  Google Scholar 

Hudson AE (2020) Anesthesia as decoupling? Anesthesiology 133:11–12. https://doi.org/10.1097/ALN.0000000000003366

Article  PubMed  Google Scholar 

Ilieş I, Zupanc GKH (2023) Computational modeling predicts regulation of central pattern generator oscillations by size and density of the underlying heterogenous network. J Comput Neurosci 51:87–105. https://doi.org/10.1007/s10827-022-00835-7

Article  PubMed  Google Scholar 

Ilieş I, Traniello IM, Sîrbulescu RF, Zupanc GKH (2014) Determination of relative age using growth increments of scales as a minimally invasive method in the tropical freshwater Apteronotus leptorhynchus. J Fish Biol 84:1312–1325

Article  PubMed  Google Scholar 

Kawasaki M, Maler L, Rose GJ, Heiligenberg W (1988) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol 276:113–131. https://doi.org/10.1002/cne.902760108

Article  CAS  PubMed  Google Scholar 

Kelz MB, Mashour GA (2019) The biology of general anesthesia from Paramecium to primate. Curr Biol 29:R1199–R1210. https://doi.org/10.1016/j.cub.2019.09.071

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kispersky TJ, Caplan JS, Marder E (2012) Increase in sodium conductance decreases firing rate and gain in model neurons. J Neurosci 32:10995–11004. https://doi.org/10.1523/JNEUROSCI.2045-12.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lea WA, Xi J, Jadhav A, Lu L, Austin CP, Simeonov A, Eckenhoff RG (2009) A high-throughput approach for identification of novel general anesthetics. PLoS ONE 4:e7150. https://doi.org/10.1371/journal.pone.0007150

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leonard J, Matsushita A, Kawasaki M (2022) Morphology and receptive field organization of a temporal processing region in Apteronotus albifrons. J Comp Physiol A 208:405–420. https://doi.org/10.1007/s00359-022-01546-1

Article  Google Scholar 

Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, Anderson WS, Hochberg LR, Cash SS, Brown EN, Purdon PL (2012) Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci U S A 109:E3377-3386. https://doi.org/10.1073/pnas.1210907109

Article  PubMed  PubMed Central  Google Scholar 

Maggi CA, Meli A (1986a) Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 1: General considerations. Experientia 42:109–114. https://doi.org/10.1007/BF01952426

Article  CAS  PubMed  Google Scholar 

Maggi CA, Meli A (1986b) Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 2: Cardiovascular system. Experientia 42:292–297. https://doi.org/10.1007/BF01942510

Article  CAS  PubMed  Google Scholar 

Maggi CA, Meli A (1986c) Suitability of urethane anesthesia for physiopharmacological investigations. Part 3: Other systems and conclusions. Experientia 42:531–537. https://doi.org/10.1007/BF01946692

Article  CAS  PubMed 

留言 (0)

沒有登入
gif