Gene expression differences consistent with water loss reduction underlie desiccation tolerance of natural Drosophila populations

Wheeler N, Watts N. Climate change: from science to practice. Curr Environ Health Rep. 2018;5(1):170–8.

Article  PubMed  PubMed Central  Google Scholar 

Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst. 2006;37(1):637–69.

Article  Google Scholar 

Stott P. Climate change. How climate change affects extreme weather events. Science. 2016;352(6293):1517–8.

Article  CAS  PubMed  Google Scholar 

Waldvogel AM, Feldmeyer B, Rolshausen G, Exposito-Alonso M, Rellstab C, Kofler R, et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol Lett. 2020;4(1):4–18.

Article  PubMed  PubMed Central  Google Scholar 

Grillakis MG. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci Total Environ. 2019;660:1245–55.

Article  CAS  PubMed  Google Scholar 

Schlaepfer DR, Bradford JB, Lauenroth WK, Munson SM, Tietjen B, Hall SA, et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat Commun. 2017;8:14196.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edney EB. Water balance in land arthropods. Berlin: Springer; 1977.

Book  Google Scholar 

Gibbs AG, Chippindale AK, Rose MR. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J Exp Biol. 1997;200(Pt 12):1821–32.

Article  CAS  PubMed  Google Scholar 

Gibbs AG, Rajpurohit S. Cuticular lipids and water balance. In: Blomquist G, Bagnères A, editors. Insect Hydrocarbons: Biology. Biochemistry, and Chemical Ecology: Cambridge University Press; 2010. p. 100–20.

Chapter  Google Scholar 

Møller AP. Quantifying rapidly declining abundance of insects in Europe using a paired experimental design. Ecol Evol. 2020;10(5):2446–51.

Article  PubMed  PubMed Central  Google Scholar 

Sánchez-Bayo F, Wyckhuys KAG. Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv. 2019;232:8–27.

Article  Google Scholar 

Kellermann V, Heerwaarden BV. Terrestrial insects and climate change: adaptive responses in key traits. Physiological Entomol. 2019;44:99–115.

Article  Google Scholar 

Forister ML, Pelton EM, Black SH. Declines in insect abundance and diversity: we know enough to act now. Conserv Sci Pract. 2019:e80. https://doi.org/10.1111/csp2.802019.

Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling HM, et al. Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS ONE. 2009;4(8):e6487.

Article  PubMed  PubMed Central  Google Scholar 

Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, et al. Climate warming and disease risks for terrestrial and marine biota. Science. 2002;296(5576):2158–62.

Article  CAS  PubMed  Google Scholar 

Robinet C, Roques A. Direct impacts of recent climate warming on insect populations. Integr Zool. 2010;5(2):132–42.

Article  PubMed  Google Scholar 

Laws AN, Belovsky GE. How will species respond to climate change? Examining the effects of temperature and population density on an herbivorous insect. Environ Entomol. 2010;39(2):312–9.

Article  PubMed  Google Scholar 

Chown SL, Sørensen JG, Terblanche JS. Water loss in insects: an environmental change perspective. J Insect Physiol. 2011;57(8):1070–84.

Article  CAS  PubMed  Google Scholar 

Matos M, Simões P, Fragata I, Quina AS, Kristensen TN, Santos M. Editorial: Coping with climate change: a genomic perspective on thermal adaptation. Front Genet. 2020;11:619441.

Article  PubMed  Google Scholar 

Kellermann V, Hoffmann AA, Overgaard J, Loeschcke V, Sgrò CM. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc Biol Sci. 2018;285(1874):20180048. https://doi.org/10.1098/rspb.2018.0048.

Coyne JA, Bundgaard J, Prout T. Geographic variation of tolerance to environmental stress in Drosophila pseudoobscura. Am Nat. 1983;122:474–88.

Article  Google Scholar 

Gibbs AG, Matzkin LM. Evolution of water balance in the genus Drosophila. J Exp Biol. 2001;204(Pt 13):2331–8.

Article  CAS  PubMed  Google Scholar 

Lemeunier F, David JR, Tsacas L, Ashburner M. The melanogaster species group. In: Ashburner M, Carson HL, Thompson J, editors. The genetics and biology of Drosophila. London and Orlando: Academic Press; 1986. p. 147–256.

Google Scholar 

Parsons PA. The evolutionary biology of colonizing species. Cambridge: Cambridge University Press; 1983.

Book  Google Scholar 

Hoffmann AA, Hallas RJ, Dean JA, Schiffer M. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science. 2003;301(5629):100–2.

Article  CAS  PubMed  Google Scholar 

Hoffmann AA, Hallas R, Sinclair C, Mitrovski P. Levels of variation in stress resistance in drosophila among strains, local populations, and geographic regions: patterns for desiccation, starvation, cold resistance, and associated traits. Evolution. 2001;55(8):1621–30.

CAS  PubMed  Google Scholar 

Matzkin LM, Watts TD, Markow TA. Desiccation resistance in four Drosophila species: sex and population effects. Fly (Austin). 2007;1(5):268–73.

Article  PubMed  Google Scholar 

Rajpurohit S, Oliveira CC, Etges WJ, Gibbs AG. Functional genomic and phenotypic responses to desiccation in natural populations of a desert drosophilid. Mol Ecol. 2013;22(10):2698–715.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajpurohit S, Nedved O. Clinal variation in fitness related traits in tropical drosophilids of the Indian subcontinent. J Therm Biol. 2013;38:345–54.

Article  Google Scholar 

Rajpurohit S, Nedved O, Gibbs AG. Meta-analysis of geographical clines in desiccation tolerance of Indian drosophilids. Comp Biochem Physiol A Mol Integr Physiol. 2013;164(2):391–8.

Article  CAS  PubMed  Google Scholar 

Rajpurohit S, Zhao X, Schmidt PS. A resource on latitudinal and altitudinal clines of ecologically relevant phenotypes of the Indian Drosophila. Sci Data. 2017;4:170066.

Article  PubMed  PubMed Central  Google Scholar 

Rajpurohit S, Gefen E, Bergland AO, Petrov DA, Gibbs AG, Schmidt PS. Spatiotemporal dynamics and genome-wide association genome-wide association analysis of desiccation tolerance in Drosophila melanogaster. Mol Ecol. 2018;27(17):3525–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rouault JD, Marican C, Wicker-Thomas C, Jallon JM. Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. simulans. Genetica. 2004;120(13):195–212.

Article  PubMed  Google Scholar 

Parkash R, Rajpurohit S, Ramniwas S. Changes in body melanisation and desiccation resistance in highland vs. lowland populations of D. melanogaster. J Insect Physiol. 2008;54(6):1050–6.

Article  CAS  PubMed  Google Scholar 

Parkash R, Aggarwal DD. Trade-off of energy metabolites as well as body color phenotypes for starvation and desiccation resistance in montane populations of Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol. 2012;161(2):102–13.

Article  CAS  PubMed  Google Scholar 

Hales KG, Korey CA, Larracuente AM, Roberts DM. Genetics on the fly: a primer on the Drosophila model system. Genetics. 2015;201(3):815–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griffin PC, Hangartner SB, Fournier-Level A, Hoffmann AA. Genomic trajectories to desiccation resistance: convergence and divergence among replicate selected Drosophila lines. Genetics. 2017;205(2):871–90.

Article  PubMed  Google Scholar 

Telonis-Scott M, Gane M, DeGaris S, Sgrò CM, Hoffmann AA. High resolution mapping of candidate alleles for desiccation resistance in Drosophila melanogaster under selection. Mol Biol Evol. 2012;29(5):1335–51.

Article  CAS  PubMed  Google Scholar 

Telonis-Scott M, Sgrò CM, Hoffmann AA, Griffin PC. Cross-study comparison reveals common genomic, network, and functional signatures of desiccation resistance in Drosophila melanogaster. Mol Biol Evol. 2016;33(4):1053–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang L, Aggarwal DD, Rashkovetsky E, Korol AB, Michalak P. Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. BMC Genomics. 2016;17:233.

Article  PubMed  PubMed Central  Google Scholar 

Clemson AS, Sgrò CM, Telonis-Scott M. Transcriptional profiles of plasticity for desiccation stress in Drosophila. Comp Biochem Physiol B Biochem Mol Biol. 2018;216:1–9.

Article  CAS  PubMed  Google Scholar 

Cannell E, Dornan AJ, Halberg KA, Terhzaz S, Dow JAT, Davies SA. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides. 2016;80:96–107

留言 (0)

沒有登入
gif