Structure, signal transduction, activation, and inhibition of integrin αIIbβ3

Hynes RO, Ruoslahti E, Springer TA. Reflections on Integrins-past, present, and future: the Albert Lasker basic medical research award. JAMA. 2022;328(13):1291–2.

Article  PubMed  Google Scholar 

Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell J. 2002;110(6):673–87.

Article  CAS  Google Scholar 

Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stefanini L, Lee RH, Paul DS, O'Shaughnessy EC, Ghalloussi D, Jones CI, et al. Functional redundancy between RAP1 isoforms in murine platelet production and function. Blood. 2018;132(18):1951–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, et al. Platelet integrin alphaIIbbeta3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol. 2019;12(1):26.

Article  PubMed  PubMed Central  Google Scholar 

Pagani G, Gohlke H. On the contributing role of the transmembrane domain for subunit-specific sensitivity of integrin activation. Sci Rep. 2018;8(1):5733.

Article  PubMed  PubMed Central  Google Scholar 

Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins. J Thromb Haemost. 2009;7(Suppl):1200–5.

Google Scholar 

Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood. 2004;104(6):1606–15.

Article  CAS  PubMed  Google Scholar 

Andre P, Denis CV, Ware J, Saffaripour S, Hynes RO, Ruggeri ZM, et al. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in simulated veins. Blood. 2000;96(10):3322–8.

Article  CAS  PubMed  Google Scholar 

Lau TL, Dua V, Ulmer TS. Structure of the integrin alphaIIb transmembrane segment. J Biol Chem. 2008;283(23):16162–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin alpha IIb beta 3 transmembrane complex explains integrin transmembrane signalling. Embo Journal. 2009;28(9):1351–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim C, Ye F, Ginsberg MH. Regulation of integrin activation. Annu Rev Cell Dev Biol. 2011;27:321–45.

Article  CAS  PubMed  Google Scholar 

Luo BH, Springer TA, Takagi J. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol. 2004;2(6):e153.

Article  PubMed  PubMed Central  Google Scholar 

Cheng M, Li J, Negri A, Coller BS. Swing-out of the beta3 hybrid domain is required for alphaIIbbeta3 priming and normal cytoskeletal reorganization, but not adhesion to immobilized fibrinogen. PLoS One. 2013;8(12):e81609.

Article  PubMed  PubMed Central  Google Scholar 

Jallu V, Poulain P, Fuchs PF, Kaplan C, de Brevern AG. Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the beta3 subunit of the alphaIIbbeta3 integrin. PLoS One. 2012;7(11):e47304.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou DW, Thinn AMM, Zhao Y, Wang ZL, Zhu JQ. Structure of an extended beta (3) integrin. Blood. 2018;132(9):962–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huynh K, Nguyen TH, Nguyen PT, Tran NQ, Vo VT, Gyenes M, et al. Leu33Pro (PlA) polymorphism of integrin beta3 modulates platelet Src pY418 and focal adhesion kinase pY397 phosphorylation in response to abnormally high shear stress. Blood Coagul Fibrinolysis. 2018;29(6):488–95.

Article  CAS  PubMed  Google Scholar 

Oliver KH, Jessen T, Crawford EL, Chung CY, Sutcliffe JS, Carneiro AM. Pro32Pro33 mutations in the integrin beta (3) PSI domain result in alpha IIb beta (3) priming and enhanced adhesion: reversal of the hypercoagulability phenotype by the Src inhibitor SKI-606. Mol Pharmacol. 2014;85(6):921–31.

Article  PubMed  PubMed Central  Google Scholar 

Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell. 2008;32(6):849–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dedden D, Schumacher S, Kelley CF, Zacharias M, Biertumpfel C, Fassler R, et al. The architecture of Talin1 reveals an autoinhibition mechanism. Cell J. 2019;179(1):120–31 e13.

Article  CAS  Google Scholar 

Wang JH. Pull and push: Talin activation for integrin signaling. Cell Res. 2012;22(11):1512–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wegener KL, Basran J, Bagshaw CR, Campbell ID, Roberts GC, Critchley DR, et al. Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the Talin F3 subdomain. J Mol Biol. 2008;382(1):112–26.

Article  CAS  PubMed  Google Scholar 

Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science. 2003;302(5642):103–6.

Article  CAS  PubMed  Google Scholar 

Goksoy E, Ma YQ, Wang X, Kong X, Perera D, Plow EF, et al. Structural basis for the autoinhibition of Talin in regulating integrin activation. Mol Cell. 2008;31(1):124–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiemer J, Bohm A, Lin L, Merrill-Skoloff G, Flaumenhaft R, Huang JS, et al. Galpha13 switch region 2 relieves Talin autoinhibition to activate alphaIIbbeta3 integrin. J Biol Chem. 2016;291(52):26598–612.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calderwood DA, Yan B, de Pereda JM, Alvarez BG, Fujioka Y, Liddington RC, et al. The phosphotyrosine binding-like domain of Talin activates integrins. J Biol Chem. 2002;277(24):21749–58.

Article  CAS  PubMed  Google Scholar 

Caron E. Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci. 2003;116(3):435–40.

Article  CAS  PubMed  Google Scholar 

Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, et al. Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol. 2006;16(18):1796–806.

Article  CAS  PubMed  Google Scholar 

Zhu L, Yang J, Bromberger T, Holly A, Lu F, Liu H, et al. Structure of Rap1b bound to Talin reveals a pathway for triggering integrin activation. Nat Commun. 2017;8(1):1744.

Article  PubMed  PubMed Central  Google Scholar 

Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White GC 2nd. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest. 2005;115(3):680–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stritt S, Wolf K, Lorenz V, Vogtle T, Gupta S, Bosl MR, et al. Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood. 2015;125(2):219–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lagarrigue F, Kim C, Ginsberg MH. The Rap1-RIAM-Talin axis of integrin activation and blood cell function. Blood. 2016;128(4):479–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bromberger T, Klapproth S, Rohwedder I, Zhu L, Mittmann L, Reichel CA, et al. Direct Rap1/Talin1 interaction regulates platelet and neutrophil integrin activity in mice. Blood. 2018;132(26):2754–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lagarrigue F, Gingras AR, Paul DS, Valadez AJ, Cuevas MN, Sun H, et al. Rap1 binding to the Talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation. Blood Adv. 2018;2(18):2358–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Has C, Chmel N, Levati L, Neri I, Sonnenwald T, Pigors M, et al. FERMT1 promoter mutations in patients with kindler syndrome. Clin Genet. 2015;88(3):248–54.

Article  CAS 

留言 (0)

沒有登入
gif