Cortical and subcortical morphological alteration in Angelman syndrome

Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet. 1997;15(1):74–7. https://doi.org/10.1038/ng0197-74.

Article  CAS  PubMed  Google Scholar 

Margolis SS, Sell GL, Zbinden MA, Bird LM. Angelman syndrome. Neurotherapeutics. 2015;12(3):641–50. https://doi.org/10.1007/s13311-015-0361-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du X, Wang J, Li S, Ma Y, Wang T, Wu B, et al. An analysis of phenotype and genotype in a large cohort of Chinese children with Angelman syndrome. Genes (Basel). 2022;13(8). https://doi.org/10.3390/genes13081447.

Thibert RL, Conant KD, Braun EK, Bruno P, Said RR, Nespeca MP. Thiele EA: Epilepsy in Angelman syndrome: a questionnaire-based assessment of the natural history and current treatment options. Epilepsia. 2009;50(11):2369–76. https://doi.org/10.1111/j.1528-1167.2009.02108.x.

Article  PubMed  Google Scholar 

Samanta D. Epilepsy in Angelman syndrome: a scoping review. Brain Dev. 2021;43(1):32–44. https://doi.org/10.1016/j.braindev.2020.08.014.

Article  CAS  PubMed  Google Scholar 

Wilson BJ, Sundaram SK, Huq AH, Jeong JW, Halverson SR, Behen ME, et al. Abnormal language pathway in children with Angelman syndrome. Pediatr Neurol. 2011;44(5):350–6. https://doi.org/10.1016/j.pediatrneurol.2010.12.002.

Article  PubMed  PubMed Central  Google Scholar 

Peters SU, Kaufmann WE, Bacino CA, Anderson AW, Adapa P, Chu Z, et al. Alterations in white matter pathways in Angelman syndrome. Dev Med Child Neurol. 2011;53(4):361–7. https://doi.org/10.1111/j.1469-8749.2010.03838.x.

Article  PubMed  Google Scholar 

Aghakhanyan G, Bonanni P, Randazzo G, Nappi S, Tessarotto F, De Martin L, et al. From cortical and subcortical grey matter abnormalities to neurobehavioral phenotype of Angelman syndrome: a voxel-based morphometry study. PLoS One. 2016;11(9):e0162817. https://doi.org/10.1371/journal.pone.0162817.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dick AS, Tremblay P. Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain. 2012;135(Pt 12):3529–50. https://doi.org/10.1093/brain/aws222.

Article  PubMed  Google Scholar 

Voelbel GT, Bates ME, Buckman JF, Pandina G, Hendren RL. Caudate nucleus volume and cognitive performance: are they related in childhood psychopathology? Biol Psychiatry. 2006;60(9):942–50. https://doi.org/10.1016/j.biopsych.2006.03.071.

Article  PubMed  PubMed Central  Google Scholar 

MacDonald PA, Ganjavi H, Collins DL, Evans AC, Karama S. Investigating the relation between striatal volume and IQ. Brain Imaging Behav. 2014;8(1):52–9. https://doi.org/10.1007/s11682-013-9242-3.

Article  PubMed  Google Scholar 

Yoon HM, Jo Y, Shim WH, Lee JS, Ko TS, Koo JH, et al. Disrupted functional and structural connectivity in Angelman syndrome. AJNR Am J Neuroradiol. 2020;41(5):889–97. https://doi.org/10.3174/ajnr.A6531.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norden AD, Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy & behavior : E&B. 2002;3(3):219–31. https://doi.org/10.1016/s1525-5050(02)00029-x.

Article  Google Scholar 

Kramer MA, Cash SS. Epilepsy as a disorder of cortical network organization. Neuroscientist. 2012;18(4):360–72. https://doi.org/10.1177/1073858411422754.

Article  PubMed  PubMed Central  Google Scholar 

Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb Cortex. 2011;21(9):2147–57. https://doi.org/10.1093/cercor/bhq291.

Article  PubMed  Google Scholar 

Ronan L, Murphy K, Delanty N, Doherty C, Maguire S, Scanlon C, et al. Cerebral cortical gyrification: a preliminary investigation in temporal lobe epilepsy. Epilepsia. 2007;48(2):211–9. https://doi.org/10.1111/j.1528-1167.2006.00928.x.

Article  PubMed  Google Scholar 

Roy A, Skibo J, Kalume F, Ni J, Rankin S, Lu Y, et al. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. Elife. 2015;4. https://doi.org/10.7554/eLife.12703.

Smith E, Thurm A, Greenstein D, Farmer C, Swedo S, Giedd J, et al. Cortical thickness change in autism during early childhood. Hum Brain Mapp. 2016;37(7):2616–29. https://doi.org/10.1002/hbm.23195.

Article  PubMed  PubMed Central  Google Scholar 

Manning KE, Tait R, Suckling J, Holland AJ. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults. Neuroimage Clin. 2018;17:899–909. https://doi.org/10.1016/j.nicl.2017.12.027.

Article  PubMed  Google Scholar 

Buiting K. Prader-Willi syndrome and Angelman syndrome. Am J Med Gen Part C, Seminars Med Gen. 2010;154c(3):365–76. https://doi.org/10.1002/ajmg.c.30273.

Article  CAS  Google Scholar 

Wallace GL, Robustelli B, Dankner N, Kenworthy L, Giedd JN, Martin A. Increased gyrification, but comparable surface area in adolescents with autism spectrum disorders. Brain. 2013;136(Pt 6):1956–67. https://doi.org/10.1093/brain/awt106.

Article  PubMed  PubMed Central  Google Scholar 

Ecker C, Andrews D, Dell'Acqua F, Daly E, Murphy C, Catani M, et al. Relationship between cortical gyrification, white matter connectivity, and autism spectrum disorder. Cereb Cortex. 2016;26(7):3297–309. https://doi.org/10.1093/cercor/bhw098.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohli JS, Kinnear MK, Fong CH, Fishman I, Carper RA, Muller RA. Local cortical gyrification is increased in children with autism spectrum disorders, but decreases rapidly in adolescents. Cereb Cortex. 2019;29(6):2412–23. https://doi.org/10.1093/cercor/bhy111.

Article  PubMed  Google Scholar 

Gaser C, Luders E, Thompson PM, Lee AD, Dutton RA, Geaga JA, et al. Increased local gyrification mapped in Williams syndrome. Neuroimage. 2006;33(1):46–54. https://doi.org/10.1016/j.neuroimage.2006.06.018.

Article  PubMed  Google Scholar 

Schaer M, Cuadra MB, Tamarit L, Lazeyras F, Eliez S. Thiran JP: A surface-based approach to quantify local cortical gyrification. IEEE Trans Med Imaging. 2008;27(2):161–70. https://doi.org/10.1109/TMI.2007.903576.

Article  PubMed  Google Scholar 

Gautam P, Anstey KJ, Wen W, Sachdev PS, Cherbuin N. Cortical gyrification and its relationships with cortical volume, cortical thickness, and cognitive performance in healthy mid-life adults. Behav Brain Res. 2015;287:331–9. https://doi.org/10.1016/j.bbr.2015.03.018.

Article  PubMed  Google Scholar 

Tallinen T, Chung JY, Biggins JS, Mahadevan L. Gyrification from constrained cortical expansion. Proc Natl Acad Sci U S A. 2014;111(35):12667–72. https://doi.org/10.1073/pnas.1406015111.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilke M, Altaye M, Holland SK, Consortium CA. CerebroMatic: a versatile toolbox for spline-based MRI template creation. Front Comput Neurosci. 2017;11:5. https://doi.org/10.3389/fncom.2017.00005.

Article  Google Scholar 

Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007.

Article  PubMed  Google Scholar 

Dahnke R, Yotter RA. Gaser C: Cortical thickness and central surface estimation. Neuroimage. 2013;65:336–48. https://doi.org/10.1016/j.neuroimage.2012.09.050.

Article  PubMed  Google Scholar 

Luders E, Thompson PM, Narr KL, Toga AW, Jancke L, Gaser C. A curvature-based approach to estimate local gyrification on the cortical surface. Neuroimage. 2006;29(4):1224–30. https://doi.org/10.1016/j.neuroimage.2005.08.049.

Article  CAS  PubMed  Google Scholar 

Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233–9. https://doi.org/10.1016/s1053-8119(03)00169-1.

Article  PubMed  Google Scholar 

O’brien RM. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity. 2007;41(5):673–90. https://doi.org/10.1007/s11135-006-9018-6.

Article  Google Scholar 

Potvin O, Mouiha A, Dieumegarde L, Duchesne S. Normative data for subcortical regional volumes over the lifetime of the adult human brain. Neuroimage. 2016;137:9–20. https://doi.org/10.1016/j.neuroimage.2016.05.016.

Article  PubMed  Google Scholar 

Qiu T, Chang C, Li Y, Qian L, Xiao CY, Xiao T, et al. Two years changes in the development of caudate nucleus are involved in restricted repetitive behaviors in 2-5-year-old children with autism spectrum disorder. Dev Cogn Neurosci. 2016;19:137–43. https://doi.org/10.1016/j.dcn.2016.02.010.

Article  PubMed  PubMed Central  Google Scholar 

Hervais-Adelman A, Moser-Mercer B, Michel CM, Golestani N. fMRI of simultaneous interpretation reveals the neural basis of extreme language control. Cereb Cortex. 2015;25(12):4727–39. https://doi.org/10.1093/cercor/bhu158.

Article  PubMed  Google Scholar 

Saleh A, Potter GG, McQuoid DR, Boyd B, Turner R, MacFall JR, et al. Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med. 2017;47(1):171–81. https://doi.org/10.1017/s0033291716002403.

Article  CAS  PubMed  Google Scholar 

Fortea J, Sala-Llonch R, Bartres-Faz D, Bosch B, Llado A, Bargallo N, et al. Sanchez-Valle R: Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J Alzheimers Dis. 2010;22(3):909–22. https://doi.org/10.3233/JAD-2010-100678.

Article  CAS 

留言 (0)

沒有登入
gif