The SAGA histone acetyltransferase module targets SMC5/6 to specific genes

Uhlmann F. SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol. 2016;17(7):399–412. https://doi.org/10.1038/nrm.2016.30. (Epub 2016/04/14).

Article  CAS  PubMed  Google Scholar 

Davidson IF, Peters JM. Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol. 2021;22(7):445–64. https://doi.org/10.1038/s41580-021-00349-7. (Epub 20210325).

Article  CAS  PubMed  Google Scholar 

Ransom M, Dennehey BK, Tyler JK. Chaperoning histones during DNA replication and repair. Cell. 2010;140(2):183–95. https://doi.org/10.1016/j.cell.2010.01.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morrison AJ, Shen XT. Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol. 2009;10(6):373–84. https://doi.org/10.1038/nrm2693.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helmlinger D, Tora L. Sharing the SAGA. Trends Biochem Sci. 2017;42(11):850–61. https://doi.org/10.1016/j.tibs.2017.09.001. (Epub 2017/09/27).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palecek JJ, Gruber S. Kite proteins: a superfamily of SMC/Kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure. 2015;23(12):2183–90. https://doi.org/10.1016/j.str.2015.10.004.

Article  CAS  PubMed  Google Scholar 

Wells JN, Gligoris TG, Nasmyth KA, Marsh JA. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr Biol. 2017;27(1):R17–8. https://doi.org/10.1016/j.cub.2016.11.050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolesar P, Stejskal K, Potesil D, Murray JM, Palecek JJ. Role of Nse1 subunit of SMC5/6 complex as a ubiquitin ligase. Cells. 2022;11(1):13. https://doi.org/10.3390/cells11010165.

Article  CAS  Google Scholar 

Andrews E, Palecek J, Sergeant J, Taylor E, Lehmann A, Watts F. Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol. 2005;25(1):185–96. https://doi.org/10.1128/MCB.25.1.185-196.2005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao X, Blobel G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA. 2005;102(13):4777–47782. https://doi.org/10.1073/pnas.0500537102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gligoris T, Löwe J. Structural insights into ring formation of cohesin and related smc complexes. Trends Cell Biol. 2016;26(9):680–93. https://doi.org/10.1016/j.tcb.2016.04.002. (Epub 2016/04/28).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassler M, Shaltiel IA, Haering CH. Towards a unified model of SMC complex function. Curr Biol. 2018;28(21):R1266–81. https://doi.org/10.1016/j.cub.2018.08.034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nasmyth K, Haering CH. The structure and function of SMC and kleisin complexes. Annu Rev Biochem. 2005;74:595–648. https://doi.org/10.1146/annurev.biochem.74.082803.133219.

Article  CAS  PubMed  Google Scholar 

Alt A, Dang HQ, Wells OS, Polo LM, Smith MA, McGregor GA, et al. Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nat Commun. 2017;8:14011. https://doi.org/10.1038/ncomms14011. (Epub 2017/01/30).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hallett ST, Campbell Harry I, Schellenberger P, Zhou L, Cronin NB, Baxter J, et al. Cryo-EM structure of the Smc5/6 holo-complex. Nucleic Acids Res. 2022. https://doi.org/10.1093/nar/gkac692. (Epub 20220822).

Article  PubMed  PubMed Central  Google Scholar 

Adamus M, Lelkes E, Potesil D, Ganji SR, Kolesar P, Zabrady K, et al. Molecular insights into the architecture of the human SMC5/6 complex. J Mol Biol. 2020;432(13):3820–37. https://doi.org/10.1016/j.jmb.2020.04.024.

Article  CAS  PubMed  Google Scholar 

Yu Y, Li S, Ser Z, Kuang H, Than T, Guan D, et al. Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes. Proc Natl Acad Sci USA. 2022;119(23): e2202799119. https://doi.org/10.1073/pnas.2202799119. (Epub 20220601).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, et al. Real-time imaging of DNA loop extrusion by condensin. Science. 2018;360(6384):102–5. https://doi.org/10.1126/science.aar7831. (Epub 2018/02/22).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM. DNA loop extrusion by human cohesin. Science. 2019;366(6471):1338–45. https://doi.org/10.1126/science.aaz3418. (Epub 2019/11/21).

Article  CAS  PubMed  Google Scholar 

Wang XD, Hughes AC, Brandao HB, Walker B, Lierz C, Cochran JC, et al. In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex. Mol Cell. 2018;71(5):841–7. https://doi.org/10.1016/j.molcel.2018.07.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pradhan B, Kanno K, Igarashi MU, Baaske MD, Wong JSK, Jeppsson K, et al. The Smc5/6 complex is a DNA loop extruding motor. bioRxiv. 2022. https://doi.org/10.1101/2022.05.13.491800.

Article  PubMed  PubMed Central  Google Scholar 

Zabrady K, Adamus M, Vondrova L, Liao C, Skoupilova H, Novakova M, et al. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. 2016;44(3):1064–79. https://doi.org/10.1093/nar/gkv1021.

Article  CAS  PubMed  Google Scholar 

Piazza I, Rutkowska A, Ori A, Walczak M, Metz J, Pelechano V, et al. Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits. Nat Struct Mol Biol. 2014;21(6):560–8. https://doi.org/10.1038/nsmb.2831. (Epub 20140518).

Article  CAS  PubMed  Google Scholar 

Toselli-Mollereau E, Robellet X, Fauque L, Lemaire S, Schiklenk C, Klein C, et al. Nucleosome eviction in mitosis assists condensin loading and chromosome condensation. EMBO J. 2016;35(14):1565–81. https://doi.org/10.15252/embj.201592849. (Epub 2016/06/06).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaltiel IA, Datta S, Lecomte L, Hassler M, Kschonsak M, Bravo S, et al. A hold-and-feed mechanism drives directional DNA loop extrusion by condensin. Science. 2022;376(6597):1087–94. https://doi.org/10.1126/science.abm4012. (Epub 20220602).

Article  CAS  PubMed  Google Scholar 

Shi ZB, Gao HS, Bai XC, Yu HT. Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science. 2020;368(6498):1454. https://doi.org/10.1126/science.abb0981.

Article  CAS  PubMed  Google Scholar 

Bürmann F, Funke LFH, Chin JW, Löwe J. Cryo-EM structure of MukBEF reveals DNA loop entrapment at chromosomal unloading sites. Mol Cell. 2021;81(23):4891-906.e8. https://doi.org/10.1016/j.molcel.2021.10.011. (Epub 20211104).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopez-Serra L, Kelly G, Patel H, Stewart A, Uhlmann F. The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat Genet. 2014;46(10):1147–51. https://doi.org/10.1038/ng.3080.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munoz S, Minamino M, Casas-Delucchi CS, Patel H, Uhlmann F. A role for chromatin remodeling in cohesin loading onto chromosomes. Mol Cell. 2019;74(4):664. https://doi.org/10.1016/j.molcel.2019.02.027.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munoz S, Passarelli F, Uhlmann F. Conserved roles of chromatin remodellers in cohesin loading onto chromatin. Curr Genet. 2020;66(5):951–6. https://doi.org/10.1007/s00294-020-01075-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roguev A, Wiren M, Weissman JS, Krogan NJ. High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nat Methods. 2007;4(10):861–6. https://doi.org/10.1038/nmeth1098. (Epub 2007/09/23).

Article  CAS  PubMed  Google Scholar 

Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol. 2010;28(6):617–23. https://doi.org/10.1038/nbt.1628. (Epub 2010/05/16).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagih O, Usaj M, Baryshnikova A, VanderSluis B, Kuzmin E, Costanzo M, et al. SGAtools: one-stop analysis and visualization of array-based genetic interaction screens. Nucleic Acids Res. 2013;41(Web Server issue):W591–6. https://doi.org/10.1093/nar/gkt400. (Epub 2013/05/15).

留言 (0)

沒有登入
gif