Impact of central complex lesions on innate and learnt visual navigation in ants

Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais PY, Robie A, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo T, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson K, Tanimoto H, Rubin GM (2014) Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife 3:e04580. https://doi.org/10.7554/eLife.04580

Article  PubMed  PubMed Central  Google Scholar 

Bausenwein B, Mueller NR, Heisenberg M (1994) Behavior-dependent activity labeling in the central complex of Drosophila during controlled visual stimulation. J Comp Neuro 340:255–268. https://doi.org/10.1002/cne.903400210

Article  CAS  Google Scholar 

Beetz MJ, Kraus C, Franzke M, Dreyer D, Strube-Bloss MF, Roessler W, Warrant EJ, Merlin C, el Jundi B (2022) Flight-induced compass representation in the monarch butterfly heading network. Curr Biol 32:338–349. https://doi.org/10.1016/j.cub.2021.11.009

Article  CAS  PubMed  Google Scholar 

Bender JA, Pollack AJ, Ritzmann RE (2010) Neural activity in the central complex of the insect brain is linked to locomotor changes. Curr Biol 20:921–926. https://doi.org/10.1016/j.cub.2010.03.054

Article  CAS  PubMed  Google Scholar 

Buehlmann C, Graham P (2022) Innate visual attraction in wood ants is a hardwired behavior seen across different motivational and ecological contexts. Insectes Soc 69:271–277. https://doi.org/10.1007/s00040-022-00867-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buehlmann C, Graham P, Hansson BS, Knaden M (2014) Desert ants locate food by combining high sensitivity to food odors with extensive crosswind runs. Curr Biol 24:960–964. https://doi.org/10.1016/j.cub.2014.02.056

Article  CAS  PubMed  Google Scholar 

Buehlmann C, Fernandes ASD, Graham P (2018) The interaction of path integration and terrestrial visual cues in navigating desert ants: what can we learn from path characteristics? J Exp Biol 221:jeb167304. https://doi.org/10.1242/jeb.167304

Article  PubMed  Google Scholar 

Buehlmann C, Aussel A, Graham P (2020a) Dynamic multimodal interactions in navigating wood ants: what do path details tell us about cue integration? J Exp Biol 223:jeb221036. https://doi.org/10.1242/jeb.221036

Article  PubMed  Google Scholar 

Buehlmann C, Mangan M, Graham P (2020b) Multimodal interactions in insect navigation. Anim Cogn 23:1129–1141. https://doi.org/10.1007/s10071-020-01383-2

Article  PubMed  PubMed Central  Google Scholar 

Buehlmann C, Wozniak B, Goulard R, Webb B, Graham P, Niven J (2020c) Mushroom bodies are required for learnt visual navigation but not for innate visual behaviour in ants. Curr Biol 30:3438–3443. https://doi.org/10.1016/j.cub.2020.07.013

Article  CAS  PubMed  Google Scholar 

Clement L, Schwarz S, Wystrach A (2022) An intrinsic oscillator underlies visual navigation in ants. bioRxiv. https://doi.org/10.1101/2022.04.22.489150

Article  Google Scholar 

Collett T (1988) How ladybirds approach nearby stalks: a study of visual selectivity and attention. J Comp Physiol 163:355–363. https://doi.org/10.1007/BF00604011

Article  Google Scholar 

Collett M (2010) How desert ants use a visual landmark for guidance along a habitual route. Proc Natl Acad Sci USA 107:11638–11643. https://doi.org/10.1073/pnas.1001401107

Article  PubMed  PubMed Central  Google Scholar 

Collett M, Collett TS (2000) How do insects use path integration for their navigation? Biol Cybern 83:245–259. https://doi.org/10.1007/s004220000168

Article  CAS  PubMed  Google Scholar 

Collett M, Collett TS (2018) How does the insect central complex use mushroom body output for steering? Curr Biol 28:R733–R734. https://doi.org/10.1016/j.cub.2018.05.060

Article  CAS  PubMed  Google Scholar 

Collett M, Chittka L, Collett T (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800. https://doi.org/10.1016/j.cub.2013.07.020

Article  CAS  PubMed  Google Scholar 

Collett TS, Lent DD, Graham P (2014) Scene perception and the visual control of travel direction in navigating wood ants. Philos Trans R Soc B 369:20130035. https://doi.org/10.1098/rstb.2013.0035

Article  Google Scholar 

Dewar ADM, Wystrach A, Philippides A, Graham P (2017) Neural coding in the visual system of Drosophila melanogaster: How do small neural populations support visually guided behaviours? PLoS Comp Biol 13:e1005735. https://doi.org/10.1371/journal.pcbi.1005735

Article  CAS  Google Scholar 

el Jundi B, Warrant EJ, Byrne MJ, Khaldy L, Baird E, Smolka J, Dacke M (2015) Neural coding underlying the cue preference for celestial orientation. Proc Natl Acad Sci USA 112:11395–11400. https://doi.org/10.1073/pnas.150127211

Article  PubMed  PubMed Central  Google Scholar 

Fisher YE (2022) Flexible navigational computations in the Drosophila central complex. Curr Opin Neurobiol 73:102514. https://doi.org/10.1016/j.conb.2021.12.001

Article  CAS  PubMed  Google Scholar 

Franzke M, Kraus C, Gayler M, Dreyer D, Pfeiffer K, el Jundi B (2022) Stimulus-dependent orientation strategies in monarch butterflies. J Exp Biol 225:jeb243687. https://doi.org/10.1242/jeb.243687

Article  PubMed  PubMed Central  Google Scholar 

Giraldo YM, Leitch KJ, Ros IG, Warren TL, Weir PT, Dickinson MH (2018) Sun navigation requires compass neurons in Drosophila. Curr Biol 28:2845–2852. https://doi.org/10.1016/j.cub.2018.07.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gotz KG (1987) Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J Exp Biol 128:35–46. https://doi.org/10.1242/jeb.128.1.35

Article  Google Scholar 

Goulard R, Buehlmann C, Niven J, Graham P, Webb B (2021) A unified mechanism for innate and learned visual landmark guidance in the insect central complex. PLoS Comp Biol 17:e1009383. https://doi.org/10.1371/journal.pcbi.1009383

Article  CAS  Google Scholar 

Graham P, Philippides A (2017) Vision for navigation: what can we learn from ants? Arthropod Struct Dev 46:718–722. https://doi.org/10.1016/j.asd.2017.07.001

Article  PubMed  Google Scholar 

Graham P, Fauria K, Collett TS (2003) The influence of beacon-aiming on the routes of wood ants. J Exp Biol 206:535–541. https://doi.org/10.1242/jeb.00115

Article  PubMed  Google Scholar 

Green J, Vijayan V, Pires PM, Adachi A, Maimon G (2019) A neural heading estimate is compared with an internal goal to guide oriented navigation. Nat Neurosci 22:1460–1468. https://doi.org/10.1038/s41593-019-0444-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grob R, Fleischmann PN, Grubel K, Wehner R, Roessler W (2017) The role of celestial compass information in Cataglyphis ants during learning walks and for neuroplasticity in the central complex and mushroom bodies. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2017.00226

Article  PubMed  PubMed Central  Google Scholar 

Guo PY, Ritzmann RE (2013) Neural activity in the central complex of the cockroach brain is linked to turning behaviors. J Exp Biol 216:992–1002. https://doi.org/10.1242/jeb.080473

Article  PubMed  Google Scholar 

Harrison JF, Fewell JH, Stiller TM, Breed MD (1989) Effects of experience on use of orientation cues in the giant tropical ant. Anim Behav 37:869–871. https://doi.org/10.1016/0003-3472(89)90076-6

Article  Google Scholar 

Heinze S, Reppert SM (2011) Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69:345–358. https://doi.org/10.1016/j.neuron.2010.12.025

Article  CAS  PubMed  Google Scholar 

Heinze S, Florman J, Asokaraj S, el Jundi B, Reppert SM (2013) Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly. J Comp Neurol 521:267–298. https://doi.org/10.1002/cne.23214

Article  PubMed  Google Scholar 

Heusser D, Wehner R (2002) The visual centring response in desert ants, Cataglyphis fortis. J Exp Biol 205:585–590. https://doi.org/10.1242/jeb.205.5.585

Article  PubMed  Google Scholar 

Honkanen A, Adden A, Freitas JD, Heinze S (2019) The insect central complex and the neural basis of navigational strategies. J Exp Biol 222:jeb188854. https://doi.org/10.1242/jeb.188854

Article  PubMed  Google Scholar 

Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura S, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad GM, Jayaraman V (2021) A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. Elife 10:e66039. https://doi.org/10.7554/eLife.66039

Article  PubMed  PubMed Central  Google Scholar 

Kamhi JF, Barron AB, Narendra A (2020) Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian bull ants. Curr Biol 30:3432–3437. https://doi.org/10.1016/j.cub.2020.06.030

Article  CAS  PubMed  Google Scholar 

Knaden M, Graham P (2016) The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu Rev Entomol 61:63–76. https://doi.org/10.1146/annurev-ento-010715-023703

Article  CAS  PubMed  Google Scholar 

Kuntz S, Poeck B, Sokolowski MB, Strauss R (2012) The visual orientation memory of Drosophila requires Foraging (PKG) upstream of Ignorant (RSK2) in ring neurons of the central complex. Learn Memory 19:337–340. https://doi.org/10.1101/lm.026369.112

Article  CAS 

留言 (0)

沒有登入
gif