The broad use of the Pm8 resistance gene in wheat resulted in hypermutation of the AvrPm8 gene in the powdery mildew pathogen

FAO. World food and agriculture – statistical yearbook 2021. Rome: Food and Agriculture Organization of the United Nations (FAO); 2021. https://doi.org/10.4060/cb4477enhttps://www.fao.org/documents/card/en/c/cb4477en/.

Wulff BB, Moscou MJ. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci. 2014;5:692.

Article  Google Scholar 

Lein A. Introgression of a rye chromosome to wheat strains by Georg Riebesel – Salzmunde after 1926. In: Proceedings of the international symposium on triticale: studies and breeding: 1973. Gatersleben: EUCARPIA; 1975. p. 158–68.

Crespo-Herrera LA, Garkava-Gustavsson L, Ahman I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas. 2017;154:1–9.

Article  Google Scholar 

Rabinovich SV. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica. 1998;100(1-3):323–40 (Reprinted from Wheat: Prospects for global improvement, 1998).

Article  Google Scholar 

Graybosch RA. Uneasy unions: quality effects of rye chromatin transfers to wheat. J Cereal Sci. 2001;33(1):3–16.

Article  CAS  Google Scholar 

Zhou Y, He ZH, Sui XX, Xia XC, Zhang XK, Zhang GS. Genetic improvement of grain yield and associated traits in the Northern China winter wheat region from 1960 to 2000. Crop Sci. 2007;47(1):245–53.

Article  CAS  Google Scholar 

Lukaszewski AJ. Frequency of 1RS.1AL and 1RS.1BL translocations in United-States wheats. Crop Sci. 1990;30(5):1151–3.

Article  Google Scholar 

Villareal RL, Banuelos O, Mujeeb-Kazi A, Rajaram S. Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica. 1998;103(2):195–202.

Article  Google Scholar 

Purnhauser L, Bona L, Lang L. Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica. 2011;179(2):287–95.

Article  Google Scholar 

Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, et al. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol. 2011;49:465–81.

Article  CAS  Google Scholar 

Pretorius ZA, Singh RP, Wagoire WW, Payne TS. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis. 2000;84(2):203.

Article  CAS  Google Scholar 

Bennett FGA. Resistance to powdery mildew in wheat - a review of its use in agriculture and breeding programs. Plant Pathol. 1984;33(3):279–300.

Article  Google Scholar 

Heun M, Friebe B. Introgression of powdery mildew resistance from rye into wheat. Phytopathology. 1990;80(3):242–5.

Article  Google Scholar 

Namuco LO, Coffman WR, Bergstrom GC, Sorrells ME. Virulence spectrum of the Erysiphe graminis f sp tritici population in New York. Plant Dis. 1987;71(6):539–41.

Article  Google Scholar 

Streckeisen PF, P.M. Virulence analysis of powdery mildew of wheat in Switzerland 1981-1983. Schweizerische-landwirtschaftliche-Forschung. 1985;24(3-4):261–9 [German].

Google Scholar 

Singh SP, Hurni S, Ruinelli M, Brunner S, Sánchez-Martín J, Krukowski P, et al. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol Biol. 2018;98(3):249–60.

Article  CAS  Google Scholar 

Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, et al. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 2013;76(6):957–69.

Article  CAS  Google Scholar 

Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 2004;37(4):528–38.

Article  CAS  Google Scholar 

Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci U S A. 2009;106(23):9519–24.

Article  CAS  Google Scholar 

Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M, Yahiaoui N, et al. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J. 2010;64(3):433–45.

Article  CAS  Google Scholar 

Bourras S, McNally KE, Ben-David R, Parlange F, Roffler S, Praz CR, et al. Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. Plant Cell. 2015;27(10):2991–3012.

CAS  Google Scholar 

Bourras S, Kunz L, Xue M, Praz CR, Muller MC, Kalin C, et al. The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat. Nat Commun. 2019;10(1):2292.

Article  Google Scholar 

Müller MC, Kunz L, Schudel S, Lawson AW, Kammerecker S, Isaksson J, et al. Ancient variation of the AvrPm17 gene in powdery mildew limits the effectiveness of the introgressed rye Pm17 resistance gene in wheat. Proc Natl Acad Sci U S A. 2022;119(30):e2108808119.

Article  Google Scholar 

McNally KE, Menardo F, Luthi L, Praz CR, Muller MC, Kunz L, et al. Distinct domains of the AVRPM3(A2/F2) avirulence protein from wheat powdery mildew are involved in immune receptor recognition and putative effector function. New Phytol. 2018;218(2):681–95.

Article  CAS  Google Scholar 

Bhullar NK, Zhang ZQ, Wicker T, Keller B. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol. 2010;10:88.

Article  Google Scholar 

Graybosch R, Bai G, Amand PS, Sarath G. Persistence of rye (Secale cereale L.) chromosome arm 1RS in wheat (Triticum aestivum L.) breeding programs of the Great Plains of North America. Genet Resour Crop Evol. 2019;66(4):941–50.

Article  CAS  Google Scholar 

Zeng F-s, Yang L-j, Gong S-j, Zhang X-j, Wang H, Xiang L-b, et al. Virulence and diversity of Blumeria graminis f. sp. tritici populations in China. J Integr Agr. 2014;13(11):2424–37.

Article  Google Scholar 

Praz CR, Bourras S, Zeng FS, Sanchez-Martin J, Menardo F, Xue MF, et al. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. New Phytol. 2017;213(3):1301–14.

Article  CAS  Google Scholar 

Sotiropoulos AG, Arango-Isaza E, Ban T, Barbieri C, Bourras S, Cowger C, et al. Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat Commun. 2022;13(1):4315.

Article  CAS  Google Scholar 

Müller MC, Praz CR, Sotiropoulos AG, Menardo F, Kunz L, Schudel S, et al. A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. New Phytol. 2019;221(4):2176–89.

Article  Google Scholar 

Hewitt T, Müller MC, Molnár I, Mascher M, Holušová K, Šimková H, et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognises its corresponding AvrPm1a effector from Blumeria graminis. New Phytol. 2020;229(5):2812–26.

Article  Google Scholar 

Menardo F, Praz CR, Wyder S, Ben-David R, Bourras S, Matsumae H, et al. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat Genet. 2016;48(2):201–5.

Article  CAS  Google Scholar 

Rabanus-Wallace MT, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet. 2021;53:564–73.

Article  CAS  Google Scholar 

Collins L, Penny D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol. 2005;22(4):1053–66.

Article  CAS  Google Scholar 

Frey K, Pucker B. Animal, fungi, and plant genome sequences harbor different non-canonical splice sites. Cells. 2020;9(2):458.

Article  CAS  Google Scholar 

Abramowicz A, Gos M. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet. 2018;59(3):253–68.

Article  Google Scholar 

Salcedo A, Rutter W, Wang SC, Akhunova A, Bolus S, Chao SM, et al. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science. 2017;358(6370):1604–6.

Article  CAS  Google Scholar 

He F, Jacobson A. Nonsense-mediated mRNA decay: degradation of defective transcripts is only part of the story. Annu Rev Genet. 2015;49:339–66.

Article  CAS  Google Scholar 

Pedersen C, van Themaat EVL, McGuffin LJ, Abbott JC, Burgis TA, Barton G, et al. Structure and evolution of barley powdery mildew effector candidates. BMC Genomics. 2012;13:694.

Article  CAS  Google Scholar 

Menardo F, Praz CR, Wicker T, Keller B. Rapid turnover of effectors in grass powdery mildew (Blumeria graminis). BMC Evol Biol. 2017;17:223.

Article  Google Scholar 

Seong K, Krasileva KV. Prediction of effector protein structures from fungal phytopathogens enables evolutionary analyses. Nat Microbiol. 2023;8:174–87.

Pennington HG, Jones R, Kwon S, Bonciani G, Thieron H, Chandler T, et al. The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathog. 2019;15(3):e1007620.

Article  Google Scholar 

Ahmed AA, Pedersen C, Schultz-Larsen T, Kwaaitaal M, Jorgensen HJL, Thordal-Christensen H. The barley powdery mildew candidate secreted effector protein CSEP0105 inhibits the chaperone activity of a small heat shock protein. Plant Physiol. 2015;168(1):321–U576.

Article  CAS  Google Scholar 

Ahmed AA, Pedersen C, Thordal-Christensen H. The barley powdery mildew effector candidates CSEP0081 and CSEP0254 promote fungal infection success. PLoS One. 2016;11(6):e0157586.

Article  Google Scholar 

Zhang W-J, Pedersen C, Kwaaitaal M, Gregersen PL, Morch SM, Hanisch S, et al. Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c. Mol Plant Pathol. 2012;13(9):1110–9.

Article  Google Scholar 

Pliego C, Nowara D, Bonciani G, Gheorghe DM, Xu R, Surana P, et al. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol Plant Microbe Interact. 2013;26(6):633–42.

Article  CAS  Google Schol

留言 (0)

沒有登入
gif