Contraction of human brain vascular pericytes in response to islet amyloid polypeptide is reversed by pramlintide

Mathiesen DS, Lund A, Holst JJ, Knop FK, Lutz TA, Bagger JI. Amylin and calcitonin—physiology and pharmacology. Eur J Endocrinol [Internet]. 2022;1.

Westermark P. Quantitative studies of amyloid in the islets of langerhans. Ups J Med Sci [Internet]. 1972;77:91–4.

Article  CAS  PubMed  Google Scholar 

Clark A, Wells CA, Buley ID, Cruickshank JK, Vanhegan RI, Matthews DR, et al. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res [Internet]. 1988;9:151–9.

CAS  PubMed  Google Scholar 

Jurgens CA, Toukatly MN, Fligner CL, Udayasankar J, Subramanian SL, Zraika S, et al. β-Cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol [Internet]. 2011;178:2632–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banks WA, Kastin AJ. Differential permeability of the blood-brain barrier to two pancreatic peptides: Insulin and amylin. Peptides (NY) [Internet]. 1998;19:883–9.

Article  CAS  Google Scholar 

Banks WA, Kastin AJ, Maness LM, Huang W, Jaspan JB. Permeability of the blood-brain barrier to amylin. Life Sci [Internet]. 1995;57:1993–2001.

Article  CAS  PubMed  Google Scholar 

Jackson K, Barisone GA, Diaz E, Jin LW, DeCarli C, Despa F. Amylin deposition in the brain: a second amyloid in Alzheimer disease? Ann Neurol Ann Neurol. 2013;74:517–26.

Article  CAS  PubMed  Google Scholar 

Martinez-Valbuena I, Valenti-Azcarate R, Amat-Villegas I, Riverol M, Marcilla I, Andrea CE, et al. Amylin as a potential link between type 2 diabetes and alzheimer disease. Ann Neurol [Internet]. 2019;86:539–51. https://doi.org/10.1002/ana.25570.

Article  CAS  PubMed  Google Scholar 

Exalto LG, Biessels GJ, Karter AJ, Huang ES, Katon WJ, Minkoff JR, et al. Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: a cohort study. Lancet Diabetes Endocrinol [Internet]. 2013;1:183–90.

Article  PubMed  PubMed Central  Google Scholar 

Ly H, Verma N, Wu F, Liu M, Saatman KE, Nelson PT, et al. Brain microvascular injury and white matter disease provoked by diabetes-associated hyperamylinemia. Ann Neurol. 2017;82:208–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schultz N, Byman E, Fex M, Wennström M. Amylin alters human brain pericyte viability and NG2 expression. J Cerebral Blood Flow Metab [Internet]. 2017;37:1470–82.

Article  CAS  Google Scholar 

Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat Neurosci. 2016; 771–83.

Gonzales AL, Klug NR, Moshkforoush A, Lee JC, Lee FK, Shui B, et al. Contractile pericytes determine the direction of blood flow at capillary junctions. Proc Natl Acad Sci U S A [Internet]. 2020;117:27022–33. https://doi.org/10.1073/pnas.1922755117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohamed LA, Zhu H, Mousa YM, Wang E, Qiu WQ, Kaddoumi A. Amylin enhances amyloid-β peptide brain to blood efflux across the blood-brain barrier. J Alzheimer’s Dis [Internet]. 2017;56:1087–99.

Article  CAS  Google Scholar 

Schultz N, Janelidze S, Byman E, Minthon L, Nägga K, Hansson O, et al. Levels of islet amyloid polypeptide in cerebrospinal fluid and plasma from patients with Alzheimer’s disease. PLoS One [Internet]. 2019;14.

Brännström K, Öhman A, Nilsson L, Pihl M, Sandblad L, Olofsson A. The N-terminal region of amyloid β controls the aggregation rate and fibril stability at low pH through a gain of function mechanism. J Am Chem Soc [Internet]. 2014;136:10956–64.

Article  PubMed  Google Scholar 

Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, et al. National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 2012;123:1–11.

Article  CAS  PubMed  Google Scholar 

Braak H, del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

Article  PubMed  Google Scholar 

Schultz N, Byman E, Wennström M. Levels of retinal IAPP are altered in Alzheimer’s disease patients and correlate with vascular changes and hippocampal IAPP levels. Neurobiol Aging [Internet]. 2018;69:94–101.

Article  CAS  PubMed  Google Scholar 

Itoh Y, Toriumi H, Yamada S, Hoshino H, Suzuki N. Astrocytes and pericytes cooperatively maintain a capillary-like structure composed of endothelial cells on gel matrix. Brain Res. 2011;1406:74–83.

Article  CAS  PubMed  Google Scholar 

Perrot CY, Herrera JL, Fournier-Goss AE, Komatsu M. Prostaglandin E2 breaks down pericyte-endothelial cell interaction via EP1 and EP4-dependent downregulation of pericyte N-cadherin, connexin-43, and R-Ras. Sci Rep. 2020;10:11186.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coussin F, Scott RH, Wise A, Nixon GF. Comparison of sphingosine 1-phosphate-induced intracellular signaling pathways in vascular smooth muscles. Circ Res. 2002;91:151–7.

Article  CAS  PubMed  Google Scholar 

Salomone S, Yoshimura SI, Reuter U, Foley M, Thomas SS, Moskowitz MA, et al. S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. Eur J Pharmacol Elsevier. 2003;469:125–34.

Article  CAS  Google Scholar 

Wang S, Cao C, Chen Z, Bankaitis V, Tzima E, Sheibani N, et al. Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation. PLoS One [Internet]. 2012;7:e45499.

Article  CAS  PubMed  Google Scholar 

Young AA, Gedulin B, Gaeta LSL, Prickett KS, Beaumont K, Larson E, et al. Selective amylin antagonist suppresses rise in plasma lactate after intravenous glucose in the rat. Evidence for a metabolic role of endogenous amylin. FEBS Lett. 1994;343:237–41.

Article  CAS  PubMed  Google Scholar 

Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science. 1979;2003(299):1743–7.

Google Scholar 

He L, Vanlandewijck M, Raschperger E, Andaloussi Maë M, Jung B, Lebouvier T, et al. Analysis of the brain mural cell transcriptome. Sci Rep [Internet]. 2016;6:1–13.

Google Scholar 

Kutcher ME, Kolyada AY, Surks HK, Herman IM. Pericyte Rho GTPase mediates both pericyte contractile phenotype and capillary endothelial growth state. Am J Pathol [Internet]. 2007;171:693–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Nuallain B, Williams AD, Westermark P, Wetzel R. Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem. 2004;279:17490–9.

Article  PubMed  Google Scholar 

Henderson BW, Gentry EG, Rush T, Troncoso JC, Thambisetty M, Montine TJ, et al. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer’s disease and ROCK1 depletion reduces amyloid-β levels in brain. J Neurochem [Internet]. 2016;138:525–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid b oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science (1979). 2019;365.

Reinhard NR, Mastop M, Yin T, Wu Y, Bosma EK, Gadella TWJ, et al. The balance between Gαi-Cdc42/Rac and Gα12/13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate. Mol Biol Cell. 2017;28:3371–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen L, Lohfink N, Vutukuri R, Kestner RI, Trautmann S, Hecht M, et al. Endothelial sphingosine-1-phosphate receptor 4 regulates blood-brain barrier permeability and promotes a homeostatic endothelial phenotype. J Neurosci. 2022;42:1908–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Liu B, Liu S, Zhang J, Lin S. Sphingosine-1-phosphate receptor 2 mediates endothelial cells dysfunction by PI3K-Akt pathway under high glucose condition. Eur J Pharmacol. 2016;776:19–25.

Article  CAS  PubMed  Google Scholar 

Ponsaerts R, D’Hondt C, Bultynck G, Srinivas SP, Vereecke J, Himpens B. The myosin II ATPase inhibitor blebbistatin prevents thrombin-induced inhibition of intercellular calcium wave propagation in corneal endothelial cells. Invest Ophthalmol Vis Sci. 2008;49:4816–27.

Article  PubMed  Google Scholar 

Goeckeler ZM, Bridgman PC, Wysolmerski RB. Nonmuscle myosin II is responsible for maintaining endothelial cell basal tone and stress fiber integrity. Am J Physiol Cell Physiol; 2008;295.

Qi Y, Liang X, Hu X, He H, Tang L, Yao W. Tetrahydroxystilbene glucoside protects against LPS-induced endothelial dysfunction via inhibiting RhoA/ROCK signaling and F-actin remodeling. Gen Physiol Biophys; 2020;39:407–17.

Li X, Li X, Sun R, Gao M, Wang H. Cadmium exposure enhances VE-cadherin expression in endothelial cells via suppression of ROCK signaling. Exp Ther Med; 2022;23.

Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res [Internet]. 2005;97:512–23. https://doi.org/10.1161/01.RES.0000182903.16652.d7.

Article  CAS  PubMed  Google Scholar 

Abedini A, Cao P, Plesner A, Zhang J, He M, Derk J, et al. RAGE binds preamyloid IAPP intermediates and mediates pancreatic β cell proteotoxicity. J Clin Invest. 2018;128:682–98.

Article  PubMed  PubMed Central  Google Scholar 

Zhang SS, Hu JQ, Liu XH, Chen LX, Chen H, Guo XH, et al. Role of moesin phosphorylation in retinal pericyte migration and detachment induced by advanced glycation endproducts. Front Endocrinol (Lausanne); 2020;11.

Zhao MJ, Jiang HR, Sun JW, Wang ZA, Hu B, Zhu CR, et al. Roles of RAGE/ROCK1 pathway in HMGB1-induced early changes in barrier permeability of human pulmonary microvascular endothelial cell. Front Immunol; 2021;12.

Chen J, Sun Z, Jin M, Tu Y, Wang S, Yang X, et al. Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway. J Neuroimmunol. 2017;305:108–14.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif