Sensory salience processing moderates attenuated gazes on faces in autism spectrum disorder: a case–control study

Treisman AM. Selective attention in man. Br Med Bull. 1964;20(1):12–6.

Article  CAS  PubMed  Google Scholar 

Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.

Article  CAS  PubMed  Google Scholar 

Itti L, Koch C. Computational modelling of visual attention. Nat Rev Neurosci. 2001;2(3):194–203.

Article  CAS  PubMed  Google Scholar 

Hutchinson JB, Turk-Browne NB. Memory-guided attention: control from multiple memory systems. Trends Cogn Sci. 2012;16(12):576–9.

Article  PubMed  PubMed Central  Google Scholar 

Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci. 2000;4(6):223–33.

Article  CAS  PubMed  Google Scholar 

Frazier TW, Strauss M, Klingemier EW, Zetzer EE, Hardan AY, Eng C, et al. A meta-analysis of gaze differences to social and nonsocial information between individuals with and without autism. J Am Acad Child Adolesc Psychiatry. 2017;56(7):546–55.

Article  PubMed  PubMed Central  Google Scholar 

Chevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT. The social motivation theory of autism. Trends Cogn Sci. 2012;16(4):231–9.

Article  PubMed  PubMed Central  Google Scholar 

Clements CC, Zoltowski AR, Yankowitz LD, Yerys BE, Schultz RT, Herrington JD. Evaluation of the social motivation hypothesis of autism: a systematic review and meta-analysis. JAMA Psychiat. 2018;75(8):797–808.

Article  Google Scholar 

Veale R, Hafed ZM, Yoshida M. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos Trans Roy Soc B Biol Sci. 2017;372(1714):20160113.

Article  Google Scholar 

Melloni L, van Leeuwen S, Alink A, Müller NG. Interaction between bottom-up saliency and top-down control: how saliency maps are created in the human brain. Cereb Cortex. 2012;22(12):2943–52.

Article  PubMed  Google Scholar 

Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neurosci Rev J Bring Neurobiol Neurol Psychiatry. 2014;20(2):150–9.

Google Scholar 

Green SA, Hernandez L, Bookheimer SY, Dapretto M. Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity. J Am Acad Child Adolesc Psychiatry. 2016;55(7):618-26.e1.

Article  PubMed  PubMed Central  Google Scholar 

Oldehinkel M, Mennes M, Marquand A, Charman T, Tillmann J, Ecker C, et al. Altered connectivity between cerebellum, visual, and sensory-motor networks in autism spectrum disorder: results from the EU-AIMS longitudinal european autism project. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018.

Jassim N, Baron-Cohen S, Suckling J. Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism. Neurosci Biobehav Rev. 2021;127:146–57.

Article  PubMed  Google Scholar 

Wang S, Jiang M, Duchesne Xavier M, Laugeson Elizabeth A, Kennedy Daniel P, Adolphs R, et al. Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron. 2015;88(3):604–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

American Psychiatric Association. Diagnostic and statistical manual of mental disorders, (DSM-5®). Washington, DC.: American Psychiatric Association; 2013.

Vazey EM, Moorman DE, Aston-Jones G. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proc Natl Acad Sci USA. 2018;115(40):E9439–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacob SN, Nienborg H. Monoaminergic neuromodulation of sensory processing. Front Neural Circuits. 2018;12:51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hermans EJ, Henckens MJAG, Joëls M, Fernández G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci. 2014;37(6):304–14.

Article  CAS  PubMed  Google Scholar 

Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50.

Article  CAS  PubMed  Google Scholar 

Mather M, Clewett D, Sakaki M, Harley CW. Norepinephrine ignites local hotspots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav Brain Sci. 2016;39:e200.

Article  PubMed  Google Scholar 

Kucyi A, Parvizi J. Pupillary dynamics link spontaneous and task-evoked activations recorded directly from human insula. J Neurosci. 2020;40(32):6207–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thiele A, Bellgrove MA. Neuromodulation of attention. Neuron. 2018;97(4):769–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strauch C, Wang C-A, Einhäuser W, Van der Stigchel S, Naber M. Pupillometry as an integrated readout of distinct attentional networks. Trends Neurosci. 2022.

Liebe T, Kaufmann J, Li M, Skalej M, Wagner G, Walter M. In vivo anatomical mapping of human locus coeruleus functional connectivity at 3 T MRI. Hum Brain Mapp. 2020.

Rodenkirch C, Liu Y, Schriver BJ, Wang Q. Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nat Neurosci. 2019;22(1):120–33.

Article  CAS  PubMed  Google Scholar 

McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: a focused review. Neurosci Biobehav Rev. 2019;105:190–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Safaai H, Neves R, Eschenko O, Logothetis NK, Panzeri S. Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing. Proc Natl Acad Sci USA. 2015;112(41):12834–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eldar E, Cohen JD, Niv Y. The effects of neural gain on attention and learning. Nat Neurosci. 2013;16(8):1146.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sacrey L-AR, Armstrong VL, Bryson SE, Zwaigenbaum L. Impairments to visual disengagement in autism spectrum disorder: a review of experimental studies from infancy to adulthood. Neurosci Biobehav Rev. 2014;47:559–77.

Article  PubMed  Google Scholar 

Van der Hallen R, Evers K, Brewaeys K, Van den Noortgate W, Wagemans J. Global processing takes time: a meta-analysis on local–global visual processing in ASD. Psychol Bull. 2015;141(3):549.

Article  PubMed  Google Scholar 

Bast N, Poustka L, Freitag CM. The locus coeruleus-norepinephrine system as pacemaker of attention—a developmental mechanism of derailed attentional function in autism spectrum disorder. Eur J Neurosci. 2018;47(2):115–25.

Article  PubMed  Google Scholar 

Joshi S, Li Y, Kalwani Rishi M, Gold JI. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron. 2016;89(1):221–34.

Article  CAS  PubMed  Google Scholar 

Murphy PR, O’Connell RG, O’Sullivan M, Robertson IH, Balsters JH. Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum Brain Mapp. 2014;35(8):4140–54.

Article  PubMed  PubMed Central  Google Scholar 

Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA, et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat Commun. 2016;7:13289.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathôt S, Fabius J, Van Heusden E, Van der Stigchel S. Safe and sensible preprocessing and baseline correction of pupil-size data. Behav Res Methods. 2018;50(1):94–106.

Article  PubMed  PubMed Central  Google Scholar 

Megemont M, McBurney-Lin J, Yang H. Pupil diameter is not an accurate real-time readout of locus coeruleus activity. Elife. 2022;11:e70510.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang H, Bari BA, Cohen JY, O’Connor DH. Locus coeruleus spiking differently correlates with S1 cortex activity and pupil diameter in a tactile detection task. Elife. 2021;10: e64327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Granovetter MC, Burlingham CS, Blauch NM, Minshew NJ, Heeger DJ, Behrmann M. Uncharacteristic task-evoked pupillary responses implicate atypical locus coeruleus activity in autism. J Neurosci. 2020;40(19):3815–26.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif