Lipid nanoparticles for gene therapy in ocular diseases

Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol. 2020;8:337–47. https://doi.org/10.1016/S2213-8587(19)30411-5.

Article  PubMed  Google Scholar 

Farrand KF, Fridman M, Stillman IÖ, Schaumberg DA. Prevalence of diagnosed dry eye disease in the United States among adults aged 18 years and older. Am J Ophthalmol. 2017;182:90–8. https://doi.org/10.1016/J.AJO.2017.06.033.

Article  PubMed  Google Scholar 

Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: the past, present, and predictions for the future. Cureus. 2020;12. https://doi.org/10.7759/CUREUS.11686.

Bourne RRA, Steinmetz JD, Flaxman S, et al. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the global burden of disease study. Lancet Glob Health. 2021;9:e130–43. https://doi.org/10.1016/S2214-109X(20)30425-3.

Article  Google Scholar 

Biswas T, Krishnan J, Rohner N. Poor eyesight reveals a new vision gene. Elife 2022;11:. https://doi.org/10.7554/ELIFE.81520.

Ganapathi M, Thomas-Wilson A, Buchovecky C, et al. Clinical exome sequencing for inherited retinal degenerations at a tertiary care center. Sci Rep. 2022;12:9358. https://doi.org/10.1038/s41598-022-13026-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J-K, Li W, Gao F-J, et al. Mutation screening of mtDNA combined targeted exon sequencing in a cohort with suspected hereditary optic neuropathy. Transl Vis Sci Technol. 2020;9:11. https://doi.org/10.1167/tvst.9.8.11.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Zhang Z, Huang L, et al. Update on the phenotypic and genotypic Spectrum of KIF11-related retinopathy. Genes (Basel). 2022;13. https://doi.org/10.3390/genes13040713.

Wang P, Li S, Sun W, et al. An ophthalmic targeted exome sequencing panel as a powerful tool to identify causative mutations in patients suspected of hereditary eye diseases. Transl Vis Sci Technol. 2019;8. https://doi.org/10.1167/TVST.8.2.21.

Hysi PG, Choquet H, Khawaja AP, et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat Genet. 2020;52:401–7. https://doi.org/10.1038/S41588-020-0599-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang H, Chen Y, Chen H, et al. Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa. PLoS One. 2018;13. https://doi.org/10.1371/JOURNAL.PONE.0185237.

Orozco LD, Chen HH, Cox C, et al. Integration of eQTL and a single-cell atlas in the human eye identifies causal genes for age-related macular degeneration. Cell Rep. 2020;30:1246–1259.e6. https://doi.org/10.1016/J.CELREP.2019.12.082.

Article  CAS  PubMed  Google Scholar 

Harb EN, Wildsoet CF. Origins of refractive errors: environmental and genetic factors. Annu Rev Vis Sci. 2019;5:47–72. https://doi.org/10.1146/ANNUREV-VISION-091718-015027.

Article  PubMed  Google Scholar 

Haarman AEG, Thiadens AAHJ, van Tienhoven M, et al. Whole exome sequencing of known eye genes reveals genetic causes for high myopia. Hum Mol Genet. 2022. https://doi.org/10.1093/HMG/DDAC113.

Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular gene therapy: a literature review with special focus on immune and inflammatory responses. Clin Ophthalmol. 2022;16:1753–71. https://doi.org/10.2147/OPTH.S364200.

Article  PubMed  PubMed Central  Google Scholar 

Mukai H, Ogawa K, Kato N, Kawakami S. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metab Pharmacokinet. 2022;44:100450. https://doi.org/10.1016/J.DMPK.2022.100450.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Rajala A, Rajala RVS. Lipid nanoparticles for ocular gene delivery. J Function Biomater. 2015;6:379–94. https://doi.org/10.3390/JFB6020379.

Article  CAS  Google Scholar 

Battaglia L, Serpe L, Foglietta F, et al. Application of lipid nanoparticles to ocular drug delivery. 2016;13:1743–1757. https://doi.org/10.1080/17425247.2016.1201059.

Leclercq B, Mejlachowicz D, Behar-Cohen F. Ocular barriers and their influence on gene therapy products delivery. Pharmaceutics. 2022;14:998. https://doi.org/10.3390/PHARMACEUTICS14050998.

Article  PubMed  PubMed Central  Google Scholar 

Rajala A, Wang Y, Zhu Y, et al. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett. 2014;14:5257–63. https://doi.org/10.1021/NL502275S/ASSET/IMAGES/LARGE/NL-2014-02275S_0006.JPEG.

Article  CAS  PubMed  PubMed Central  Google Scholar 

del Pozo-Rodríguez A, Solinís MÁ, Rodríguez-Gascón A. Applications of lipid nanoparticles in gene therapy. Eur J Pharm Biopharm. 2016;109:184–93. https://doi.org/10.1016/J.EJPB.2016.10.016.

Article  PubMed  Google Scholar 

Adijanto J, Naash MI. Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm. 2015;95:353–67. https://doi.org/10.1016/J.EJPB.2014.12.028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lalu L, Tambe V, Pradhan D, et al. Novel nanosystems for the treatment of ocular inflammation: current paradigms and future research directions. J Control Release. 2017;268:19–39. https://doi.org/10.1016/J.JCONREL.2017.07.035.

Article  CAS  PubMed  Google Scholar 

Blakney AK, McKay PF, Yus BI, et al. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Therapy. 2019;26:363–72. https://doi.org/10.1038/s41434-019-0095-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ripoll M, Martin E, Enot M, et al. Optimal self-assembly of lipid nanoparticles (LNP) in a ring micromixer. Sci Rep. 2022;12. https://doi.org/10.1038/S41598-022-13112-5.

Musielak E, Feliczak-Guzik A, Nowak I. Optimization of the conditions of solid lipid nanoparticles (SLN) synthesis. Molecules. 2022;27. https://doi.org/10.3390/MOLECULES27072202/S1.

Onugwu AL, Attama AA, Nnamani PO, et al. Development and optimization of solid lipid nanoparticles coated with chitosan and poly(2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. J Drug Deliv Sci Technol. 2022;74:103527. https://doi.org/10.1016/J.JDDST.2022.103527.

Article  CAS  Google Scholar 

Gupta B, Poudel BK, Pathak S, et al. Effects of formulation variables on the particle size and drug encapsulation of Imatinib-loaded solid lipid nanoparticles. AAPS PharmSciTech. 2016;17:652–62. https://doi.org/10.1208/S12249-015-0384-Z/TABLES/9.

Article  CAS  PubMed  Google Scholar 

Martínez Saraóz JV, Chapa González C. Review research protocol. Analysis of encapsulation efficiency in gene delivery using lipid nanoparticles in ocular diseases. 2021. https://doi.org/10.5281/ZENODO.4741321.

Patel S, Ryals RC, Weller KK, et al. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J Control Release. 2019;303:91–100. https://doi.org/10.1016/J.JCONREL.2019.04.015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tabatabaei SN, Derbali RM, Yang C, et al. Co-delivery of miR-181a and melphalan by lipid nanoparticles for treatment of seeded retinoblastoma. J Control Release. 2019;298:177–85. https://doi.org/10.1016/J.JCONREL.2019.02.014.

Article  CAS  PubMed  Google Scholar 

Ryals RC, Patel S, Acosta C, et al. The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS One. 2020;15:e0241006. https://doi.org/10.1371/JOURNAL.PONE.0241006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baran-Rachwalska P, Torabi-Pour N, Sutera FM, et al. Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. J Control Release. 2020;326:192–202. https://doi.org/10.1016/J.JCONREL.2020.07.004.

Article  CAS  PubMed  Google Scholar 

Huang X, Chau Y. Enhanced delivery of siRNA to retinal ganglion cells by intravitreal lipid nanoparticles of positive charge. Mol Pharm. 2021;18:377–85. https://doi.org/10.1021/ACS.MOLPHARMACEUT.0C00992/ASSET/IMAGES/ACS.MOLPHARMACEUT.0C00992.SOCIAL.JPEG_V03.

Article  CAS  PubMed  Google Scholar 

Sanghani A, Kafetzis KN, Sato Y, et al. Novel PEGylated lipid nanoparticles have a high encapsulation efficiency and effectively deliver MRTF-B siRNA in conjunctival fibroblasts. Pharmaceutics. 2021;(13):382. https://doi.org/10.3390/PHARMACEUTICS13030382.

留言 (0)

沒有登入
gif