Comparative biology of spatial navigation in three arachnid orders (Amblypygi, Araneae, and Scorpiones)

Adams AM, Marais E, Turner JS, Prendini L, Pinshow B (2016) Similar burrow architecture of three arid-zone scorpion species implies similar ecological function. Sci Nat 103:56. https://doi.org/10.1007/s00114-016-1374-z

Article  CAS  Google Scholar 

Alexander AJ (1958) On the stridulation of scorpions. Behaviour 12:339–352. https://doi.org/10.1163/156853958X00028

Article  Google Scholar 

Ali MO, Saber S, Elmenshawy O, El Bakary Z, Sarhan M (2001) A comparative morphological study of the pectines of three scorpion species (Scorpionida, Buthidae) from Assiut, Egypt. Serket 7:94–105

Google Scholar 

Ashford K, Blankenship R, Carpenter W, Wheeler I, Gaffin D (2018) Response of the eastern sand scorpion, Paruroctonus utahensis, to air movement from a moth analog. J Arachnol 46:226–230. https://doi.org/10.1636/JoA-S-17-097.1

Article  Google Scholar 

Avarguès-Weber A, Giurfa G (2013) Conceptual learning by miniature brains. Proc R Soc Lond B Biol Sci 280:20131907. https://doi.org/10.1098/rspb.2013.1907

Article  Google Scholar 

Babu KS (1985) Patterns of arrangement and connectivity in the central nervous system of arachnids. In: Barth FG (ed) Neurobiology of arachnids. Springer-Verlag, Berlin, pp 3–19

Chapter  Google Scholar 

Baddeley B, Graham P, Philippides A, Husbands P (2011) Holistic visual encoding of ant-like routes: navigation without waypoints. Adapt Behav 19:3–15. https://doi.org/10.1177/1059712310395410

Article  Google Scholar 

Baddeley B, Graham P, Husbands P, Philippides A (2012) A model of ant route navigation driven by scene familiarity. PLoS Comput Biol 8:e1002336. https://doi.org/10.1371/journal.pcbi.1002336

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ballesteros JA, Santibáñez-López CE, Baker CM, Benavides LR, Cunha TJ, Gainett G, Sharma PP (2022) Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. Mol Biol Evol 39:msac021. https://doi.org/10.1093/molbev/msac021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ban XC, Shao ZK, Wu LJ, Sun JT, Xue XF (2022) Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida. Cladistics 38:462–464. https://doi.org/10.1111/cla.12504

Article  CAS  Google Scholar 

Barth FG (2000) How to catch the wind: spider hairs specialized for sensing the movement of air. Naturwissenschaften 87:51–58

Article  CAS  PubMed  Google Scholar 

Barth FG (2002) A spider’s world: Senses and behavior. Springer, Berlin

Book  Google Scholar 

Barth FG (2012) Arthropod strain sensors. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Netherlands, Dordrecht, pp 127–136

Google Scholar 

Barth FG (2020) A spider in motion: facets of sensory guidance. J Comp Physiol A 207:239–255. https://doi.org/10.1007/s00359-020-01449-z

Article  Google Scholar 

Barth FG, Seyfarth E-A (1971) Slit sense organs and kinesthetic orientation. Z Vergl Physiol 74:326–328. https://doi.org/10.1007/BF00297732

Article  Google Scholar 

Barth FG, Stagl J (1976) The slit sense organs of arachnids: a comparative study of their topography on the walking legs (Chelicerata, Arachnida). Zoomorphologie 86:1–23. https://doi.org/10.1007/BF01006710

Article  Google Scholar 

Barth FG, Wadepuhl M (1975) Slit sense organs on the scorpion leg (Androctonus australis L., Buthidae). J Morphol 145:209–227. https://doi.org/10.1002/jmor.1051450207

Article  PubMed  Google Scholar 

Beck L, Gorke K (1974) Tagesperiodik, revierverhalten und beutefang der geisselspinne Admetus pumilio CL Koch im freiland. Z Tierpsychol 35:173–186

Article  CAS  PubMed  Google Scholar 

Beck L, Foelix R, Godeke E, Kaiser R (1977) Morphology, larval development, and hair sensilla of antenniform legs of whip spider Heterophrynus longicornis Butler (Arachnida Amblypygi). Zoomorphologie 88:259–276

Article  Google Scholar 

Becker JE, Brown CA (2016) Reliable refuge: two sky island scorpion species select larger, thermally stable retreat sites. PLOS ONE 11:e0168105. https://doi.org/10.1371/journal.pone.0168105

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belmonte C, Stensaas LJ (1975) Repetitive spikes in photoreceptor axons of the scorpion eye. Invertebrate eye structure and tetrodotoxin. J Gen Physiol 66:649–655. https://doi.org/10.1085/jgp.66.5.649

Article  CAS  PubMed  Google Scholar 

Bingman VP, Graving JM, Hebets EA, Wiegmann DD (2017) Importance of the antenniform legs, but not vision, for homing by the neotropical whip spider Paraphrynus laevifrons. J Exp Biol 220:885–890. https://doi.org/10.1242/jeb.149823

Article  PubMed  Google Scholar 

Blest AD (1985) The fine structure of spider photoreceptors in relation to function. In: Barth FG (ed) Neurobiology of arachnids. Springer-Verlag, Berlin, pp 79–102

Chapter  Google Scholar 

Booncham U, Sitthicharoenchai D, Pradatsundarasar A, Prasarnpun S, Thirakhupt K (2007) Sexual Dimorphism in the Asian Giant Forest Scorpion, Heterometrus laoticus Couzijn, 1981. NU Int J Sci 4:42–52

Google Scholar 

Bost K, Gaffin DD (2004) Sand scorpion home burrow navigation in the laboratory. Euscorpius 17:1–5

Google Scholar 

Bowerman RF, Burrows M (1980) The morphology and physiology of some walking leg motor neurones in a scorpion. J Comp Physiol 140:31–42. https://doi.org/10.1007/BF00613745

Article  Google Scholar 

Bradley R (1982) Digestion time and reemergence in the desert grassland scorpion Paruroctonus utahensis (Williams) (Scorpionida, Vaejovidae). Oecologia 55:316–318. https://doi.org/10.1007/BF00376918

Article  PubMed  Google Scholar 

Bradley RA (1988) The influence of weather and biotic factors on the behaviour of the scorpion (Paruroctonus utahensis). J Anim Ecol 57:533–551. https://doi.org/10.2307/4923

Article  Google Scholar 

Brownell PH (1977) Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197:479–482. https://doi.org/10.1126/science.197.4302.479

Article  CAS  PubMed  Google Scholar 

Brownell PH (1998) Glomerular cytoarchitectures in chemosensory systems of arachnids. Ann N Y Acad Sci 855:502–507. https://doi.org/10.1111/j.1749-6632.1998.tb10614.x

Article  CAS  PubMed  Google Scholar 

Brownell P (2001) Sensory ecology and orientational behaviors. In: Brownell P, Polis G (eds) Scorpion biology and research. Oxford University Press, Oxford, pp 159–183

Google Scholar 

Brownell P, Farley RD (1979a) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol 131:23–30. https://doi.org/10.1007/BF00613080

Article  Google Scholar 

Brownell P, Farley RD (1979b) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J Comp Physiol 131:31–38. https://doi.org/10.1007/BF00613081

Article  Google Scholar 

Brownell P, Farley RD (1979c) Prey-localizing behaviour of the nocturnal desert scorpion, Paruroctonus mesaensis: Orientation to substrate vibrations. Anim Behav 27:185–193. https://doi.org/10.1016/0003-3472(79)90138-6

Article  Google Scholar 

Camp EA, Gaffin DD (1999) Escape behavior mediated by negative phototaxis in the scorpion Paruroctonus utahensis (Scorpiones, Vaejovidae). J Arachnol 27:679–684

Google Scholar 

Carricaburu P (1968) Dioptrique oculaire du scorpion Androctonus australis. Vis Res 8:1067–1072. https://doi.org/10.1016/0042-6989(68)90078-3

Article  CAS  PubMed  Google Scholar 

Casto P, Gosser J, Wiegmann DD, Hebets EA, Bingman VP (2019) Self-derived chemical cues support home refuge recognition in the whip spider Phrynus marginemaculatus (Amblypygi: Phrynidae). J Arachnol 47:290–292. https://doi.org/10.1636/JoA-S-18-067

Article  Google Scholar 

Casto P, Wiegmann DD, Coppola VJ, Nardi D, Hebets EA, Bingman VP (2020) Vertical-surface navigation in the Neotropical whip spider Paraphrynus laevifrons (Arachnida: Amblypygi). Anim Cogn 23:1205–1213. https://doi.org/10.1007/s10071-020-01420-0

Article  PubMed  Google Scholar 

Chapin KJ, Hebets EA (2016) The behavioral ecology of amblypygids. J Arachnol 44:1–14. https://doi.org/10.1636/V15-62.1

Article  Google Scholar 

Collett TS (2019) Path integration: how details of the honeybee waggle dance and the foraging strategies of desert ants might help in understanding its mechanisms. J Exp Biol 222:jeb205187. https://doi.org/10.1242/jeb.205187

Article  PubMed  Google Scholar 

Collett TS, Zeil J (2018) Insect learning flights and walks. Curr Biol 28:R984–R988. https://doi.org/10.1016/j.cub.2018.04.050

Article  CAS  PubMed  Google Scholar 

Cruse H, Wehner R (2011) No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput Biol 7:e1002009. https://doi.org/10.1371/journal.pcbi.1002009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dacke M, Nilsson DE, Warrant EJ, Blest AD, Land MF, O’Carroll DC (1999) Built-in polarizers form part of a compass organ in spiders. Nature 401:470–473. https://doi.org/10.1038/46773

Article  CAS  Google Scholar 

Dacke M, Doan TA, O’Carroll DC (2001) Polarized light detection in spiders. J Exp Biol 204:2481–2490. https://doi.org/10.1242/jeb.204.14.2481

Article  CAS  PubMed  Google Scholar 

Deeti S, Cheng K (2021) Learning walks in an Australian desert ant. Melophorus bagoti J Exp Biol 224:jeb242177. https://doi.org/10.1242/jeb.242177

Article  PubMed  Google Scholar 

Devaud J-M, Papouin T, Carcaud J, Sandoz J-C, Grünewald B, Giurfa M (2015) Neural substrate for higher-order learning in an insect: mushroom bodies are necessary for configural discriminations. Proc Natl Acad Sci USA 112:E5854–E5862. https://doi.org/10.1073/pnas.1508422112

Article  CAS  PubMed 

留言 (0)

沒有登入
gif