How Sleep Research in Extreme Environments Can Inform the Military: Advocating for a Transactional Model of Sleep Adaptation

Castillo M. The 3 pillars of health. AJNR Am J Neuroradiol. 2015;36(1):1–2.

CAS  PubMed  PubMed Central  Google Scholar 

Chaput J-P, Yao J, Rao DP, Morin C. Prevalence of insomnia for Canadians aged 6 to 79. StatCan Health Rep. 2018;29(12):16–20.

Google Scholar 

Mantua J, Bessey A, Sowden WJ, Chabuz R, Brager AJ, Capaldi VF, et al. A review of environmental barriers to obtaining adequate sleep in the military operational context. Mil Med. 2019;184(7–8):e259–66.

PubMed  Google Scholar 

Good CH, Brager AJ, Capaldi VF, Mysliwiec V. Sleep in the United States military. Neuropsychopharmacol. 2020;45(1):176–91.

Google Scholar 

Zivi P, De Gennaro L, Ferlazzo F. Sleep in isolated, confined, and extreme (ICE): A review on the different factors affecting human sleep in ICE. Front Neurosci. 2020;14:851.

PubMed  PubMed Central  Google Scholar 

Bernhardt KA, Kelley AM, Feltman KA, Curry IP. Rest and activity patterns of army aviators in routine and operational training environments. Aerosp Med Hum Perform. 2019;90(1):48–52.

PubMed  Google Scholar 

Harrison E, Glickman GL, Beckerley S, Taylor MK. Self-reported sleep during U.S. Navy operations and the impact of deployment-related factors. Mil Med. 2017;182(S1):189–94.

PubMed  Google Scholar 

Troxel WM, Shih RA, Pedersen E, Geyer L, Fisher MP. Sleep in the military. Santa Monica, CA: RAND; 2015. 280 p.

Mysliwiec V, McGraw L, Pierce R, Smith P, Trapp B, Roth BJ. Sleep disorders and associated medical comorbidities in active duty military personnel. Sleep. 2013;36(2):167–74.

PubMed  PubMed Central  Google Scholar 

•• Miller NL, Tvaryanas AP, Shattuck LG. Accommodating adolescent sleep-wake patterns: The effects of shifting the timing of sleep on training effectiveness. Sleep. 2012;35(8):1123–36. This study applied theoretical knowledge to military field training by adapting the schedule of basic combat training to better suit the natural circadian rhythm of post-adolescents through phase delay. Specifically, the authors compared one group following the usual schedule, whereby nighttime occurred between 20.30 and 04.30, with another a group obtaining scheduled rest from 23.00 to 07.00. Those in the adapted schedule demonstrated positive results in total sleep time, mood and marksmanship.

PubMed  PubMed Central  Google Scholar 

Kanas N, Manzey D. Space psychology and psychiatry: Springer Dordrecht; 2003. 240 p.

Buguet A. Sleep under extreme environments: Effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space. J Neurol Sci. 2007;262(1–2):145–52.

PubMed  Google Scholar 

Bartone PT, Krueger GP, Bartone JV. Individual differences in adaptability to isolated, confined, and extreme environments. Aerosp Med Hum Perform. 2018;89(6):536–46.

PubMed  Google Scholar 

Pattyn N, Van Puyvelde M, Fernandez-Tellez H, Roelands B, Mairesse O. From the midnight sun to the longest night: Sleep in Antarctica. Sleep Med Rev. 2018;37:159–72.

PubMed  Google Scholar 

• Mairesse O, MacDonald-Nethercott E, Neu D, Tellez HF, Dessy E, Neyt X, et al. Preparing for Mars: Human sleep and performance during a 13 month stay in Antarctica. Sleep. 2019;42(1):1–12. Collected objective and subjective sleep assessment, as well as psychomotor vigilance behavioral performance, every 6 weeks during a 13-month Mars analog in Antarctica (n = 13). While sleep latencies and severe periodic breathing were observed effects of the ICE environment, the authors highlight the importance of interindividual variability in sleep traits across prolonged periods of ICE environments.

• Lane JM, Qian J, Mignot E, Redline S, Scheer F, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet. 2022;24(1):4–20. A review of sleep and circadian rhythms from a genetics standpoint, through coverage of the time course of scientific knowledge in sleep and circadian rhythm genetics, and the application of knowledge to human health and sleep and circadian rhythm disorders. The authors are attentive to phenotyping from subjective compared to objective measures, as well as interindividual variability and genetic interactions with the environment.

Van Puyvelde M, Mairesse O. Do C-tactile afferents go to sleep? A potential role for somatosensory stimulation in sleep regulation. Curr Opin Behav Sci. 2022;43:62–8.

Google Scholar 

Sandal GM, Leon GR, Palinkas L. Human challenges in polar and space environments. Rev Environ Sci Biotechnol. 2006;5(2–3):281–96.

Google Scholar 

Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097.

PubMed  PubMed Central  Google Scholar 

Alpatov AM. Circadian rhythms in a long-term duration space flight. Adv Space Res. 1992;12(1):249–52.

CAS  PubMed  Google Scholar 

Anderson H, Chambers MMC, Myhre G, Nicholson AN, Stone BM. Sleep of shiftworkers within the Arctic Circle. Aviat Space Environ Med. 1984;55:1026–30.

CAS  PubMed  Google Scholar 

Aschoff J. Estimates on the duration of sleep and wakefulness made in isolation. Chronobiol Int. 1992;9(1):1–10.

CAS  PubMed  Google Scholar 

Ariznavarreta C, Cardinali DP, Villanua MA, Granados B, Martin M, Chiesa JJ, et al. Circadian rhythms in airline pilots submitted to long-haul transmeridian flights. Aviat Space Environ Med. 2002;73(5):445–55.

CAS  PubMed  Google Scholar 

Bhargava R, Mukerji S, Sachdeva U. Psychological impact for the Antarctic winter of Indian expeditioners. Environ Behav. 2000;32(1):111–27.

CAS  PubMed  Google Scholar 

Bhattacharyya M, Pal MS, Sharma YK, Majumdar D. Changes in sleep patterns during prolonged stays in Antarctica. Int J Biometeorol. 2008;52(8):869–79.

PubMed  Google Scholar 

de Blasiis K, Mauvieux B, Elsworth-Edelsten C, Pezé T, Jouffroy R, Hurdiel R. Photoperiod impact on a sailor’s sleep-wake rhythm and core body temperature in polar environment. Wilderness Environ Med. 2019;30(4):343–50.

PubMed  Google Scholar 

Booker JM, Hellekson CJ, Putilov AA, Danilenko KV. Seasonal depression and sleep disturbances in Alaska and Siberia: A pilot study. Arctic Med Res. 1991;Suppl:281–4.

Borisenkov MF. The pattern of entrainment of the human sleep-wake rhythm by the natural photoperiod in the north. Chronobiol Int. 2011;28(10):921–9.

PubMed  Google Scholar 

Bratlid T, Wahlund B. Alterations in serum melatonin and sleep in individuals in a sub-arctic region from winter to spring. Int J Circumpolar Health. 2016;62(3):242–54.

Google Scholar 

Brockmann PE, Gozal D, Villarroel L, Damiani F, Nuñez F, Cajochen C. Geographic latitude and sleep duration: A population-based survey from the Tropic of Capricorn to the Antarctic Circle. Chronobiol Int. 2017;34(3):373–81.

PubMed  Google Scholar 

Buguet AGC. Cold-induced bradycardia in man during sleep in Arctic winter nights. Int J Biometeor. 1987;31(1):21–31.

CAS  Google Scholar 

Buguet A, Rivolier J, Jouvet M. Human sleep patterns in Antarctica. Sleep. 1987;10(4):374–82.

CAS  PubMed  Google Scholar 

Buguet AGC, Livingstone SD, Reed LD, Limmer RE. EEG patterns and body temperatures in man during sleep in Arctic winter nights. Int J Biometeor. 1976;20(1):61–9.

CAS  Google Scholar 

Caldwell JA, Gilreath SR. A survey of aircrew fatigue in a sample of U.S. Army aviation personnel. Aviat Space Environ Med. 2002;73(5):472–80.

PubMed  Google Scholar 

Chandrashekaran K, Marimuthu G, Geetha L. Correlations between sleep and wake in internally synchronized and desynchronized circadian rhythms in humans under prolonged isolation. J Biol Rhythms. 1997;12(1):26–33.

CAS  PubMed  Google Scholar 

Chen N, Wu Q, Xiong Y, Chen G, Song D, Xu C. Circadian rhythm and sleep during prolonged Antarctic residence at Chinese Zhongshan station. Wilderness Environ Med. 2016;27(4):458–67.

PubMed  Google Scholar 

Chen H, Lv K, Ji G, Liu Z, Guo J, Wan Y, et al. Characterization of sleep-wake patterns in crew members under a short-duration spaceflight. Biol Rhythm Res. 2020;51(3):392–407.

Google Scholar 

Collet G, Mairesse O, Cortoos A, Tellez HF, Neyt X, Peigneux P, et al. Altitude and seasonality impact on sleep in Antarctica. Aerosp Med Hum Perform. 2015;86(4):392–6.

PubMed  Google Scholar 

Corbett RW, Middleton B, Arendt J. An hour of bright white light in the early morning improves performance and advances sleep and circadian phase during the Antarctic winter. Neurosci Lett. 2012;525(2):146–51.

CAS  PubMed  Google Scholar 

Danilenko KV, Kobelev E, Semenova EA, Aftanas LI. Summer-winter difference in 24-h melatonin rhythms in subjects on a 5-workdays schedule in Siberia without daylight saving time transitions. Physiol Behav. 2019;212:112686.

CAS  PubMed  Google Scholar 

Danilenko KV, Kobelev E, Zhanaeva SY, Aftanas LI. Winter-summer difference in post-awakening salivary alpha-amylase and sleepiness depending on sleep and melatonin. Physiol Behav. 2021;240:113549.

CAS  PubMed  Google Scholar 

Danker-Hopfe H, Sauter C, Kowalski JT, Kropp S, Ströhle A, Wesemann U, et al. Sleep quality of German soldiers before, during and after deployment in Afghanistan-a prospective study. J Sleep Res. 2017;26(3):353–63.

PubMed  Google Scholar 

Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De Cecco A, et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regulatory Integrative Comp Physiol. 2001;281:R1647–64.

CAS  Google Scholar 

Folgueira A, Simonelli G, Plano S, Tortello C, Cuiuli JM, Blanchard A, et al. Sleep, napping and alertness during an overwintering mission at Belgrano II Argentine Antarctic station. Sci Rep. 2019;9(1):10875.

PubMed  PubMed Central  Google Scholar 

Forberg K, Waage S, Moen B, Bjorvatn B. Subjective and objective sleep and sleepiness among tunnel workers in an extreme and isolated environment: 10-h shifts, 21-day working period, at 78 degrees north. Sleep Med. 2010;11(2):185–90.

PubMed  Google Scholar 

Friborg O, Rosenvinge JH, Wynn R, Gradisar M. Sleep timing, chronotype, mood, and behavior at an Arctic latitude (69 degrees N). Sleep Med. 2014;15(7):798–807.

PubMed  Google Scholar 

Gander PH, Macdonald JA, Montgomery JC, Paulin MG. Adaptation of sleep and circadian rhythms to the Antarctic summer: A question of zeitgeber strength. Aviat Space Environ Med. 1991;62:1019–25.

CAS  PubMed  Google Scholar 

Gemignani A, Piarulli A, Menicucci D, Laurino M, Rota G, Mastorci F, et al. How stressful are 105 days of isolation? Sleep EEG patterns and tonic cortisol in healthy volunteers simulating manned flight to Mars. Int J Psychophysiol. 2014;93(2):211–9.

PubMed  Google Scholar 

Graeber RC, Dement WC, Nicholson AN, Sasaki M, Wegmann HM. International cooperative study of aircrew layover sleep: Operational summary. Aviat Space Environ Med. 1986;57(12, Suppl.):B10-3.

CAS  PubMed  Google Scholar 

Griofa MO, Blue RS, Cohen KD, O’Keeffe DT. Sleep stability and cognitive function in an Arctic Martian analogue. Aviat Space Environ Med. 2011;82(4):434–41.

PubMed  Google Scholar 

Gundel A, Nalishiti V, Reucher E, Vejvoda M, Zulley J. Sleep and circadian rhythm during a short space mission. Clin Investig. 1993;71:718–24.

CAS  PubMed  Google Scholar 

Gundel A, Polyakov VV, Zulley J. The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res. 1997;6:1–8.

CAS  PubMed 

留言 (0)

沒有登入
gif