Newly identified form of phenotypic plasticity of cancer: immunogenic mimicry

Hanahan, D., & Weinberg, R. A. (2000). The hallmark of cancer. Cell, 100, 57–70.

Article  CAS  Google Scholar 

Hanahan, D., & Weinberg, R. A. (2011). Hallmark of cancer: the next generation. Cell, 144, 646–674.

Article  CAS  Google Scholar 

Hanahan, D. (2020). Hallmarks of cancer: new dimensions. Cancer Discovery, 12, 31–46.

Article  Google Scholar 

Yuan, S., Norgard, R. J., & Stanger, B. Z. (2019). Cellular plasticity in cancer. Cancer Discovery, 9, 837–851.

Article  CAS  Google Scholar 

Perekatt, A. O., Shah, P. P., Cheung, S., Jariwala, N., Wu, A., & Ghandi, V. (2018). SMAD4 suppresses WNT-driven dedifferentiation and oncogenesis in the differentiated gut epithelium. Cancer Research, 78, 4878–4890.

Article  CAS  Google Scholar 

Ordonez-Moran, P., Dafflon, C., Imajo, M., Nidshida, E., & Hudsken, J. (2015). HOXA5 counteracts stem cell traits by initiating WNT signaling in colorectal cancer. Cancer Cell, 28, 815–829.

Article  CAS  Google Scholar 

Goding, C. R., & Arnheiter. (2019). MITF – the first 25 years. Genes and Development, 33, 983–1007.

Article  CAS  Google Scholar 

Shah, M., Bhoumik, A., Goel, V., Dewing, A., Breitweiser, W., Kluger, H., et al. (2010). A role for ATF2 in regulating MITF and melanoma development. PlosOne Genet, 6, e1001258.

Article  CAS  Google Scholar 

Saghafinia, S., Homicsko, K., Di Domenico, A., Wullschleger, S., Perren, A., Marinoni, I., et al. (2021). Cancer cells retrace a stepwise differentiation program during malignant progression. Cancer Discovery, 11, 2638–2657.

Article  CAS  Google Scholar 

De The, H. (2018). Differentiation therapy revisited. Nature Reviews. Cancer, 18, 117–127.

Article  Google Scholar 

Boes, M., Verbrugge, I., Martin, B. P., Salmon, J. M., Ghisi, M., Baker, A., et al. (2014). Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood, 123, 1341–1352.

Article  Google Scholar 

Kaufmann CK, Mosimann C, Fan ZP, Yang S, Thomas AJ Ablain J et al. (2016) Zebrafish melanoma model reveals emergence of neural creast identity during melanoma initiation. Science,351:aad2197

Saha, S. K., Parachoniale, C. A., Ghanta, K. S., Fitamant, J., Ross, K. N., Najem, M. S., et al. (2014). Mutant IDH inhibits HNF-4a to block hepatocyte differentiation and promote biliary cancer. Nature, 513, 110–114.

Article  CAS  Google Scholar 

Krah, N. M., Narayanan, S. M., Yugawa, D. E., Straley, J., Wright, C. V. E., MacDonald, R. J., et al. (2019). Prevention and reversion of pancreatic tumorigenesis through a differentiation based mechanism. Developmental Cell, 50, 744–754.

Article  CAS  Google Scholar 

Shi, G., Di Renzo, D., Qu, C., Barney, D., Miley, D., & Konieczny, S. F. (2013). Maintenance of acinar cell organization is critical to preventing Kras-induced acinar-ductal metaplasia. Oncogene, 32, 1950–1958.

Article  CAS  Google Scholar 

Krah, N. M., De La, O. J. P., Swift, G. H., Hoang, C. Q., Millet, S. G., Chen Pan, F., et al. (2015). The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. eLife, 4, e07125.

Article  Google Scholar 

Ma, P., Zhang, Z., Benelli, M., Karthaus, W. R., Hoove, E., Chen, C.-C., et al. (2017). SOX2 promotes linage plasticities and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science, 355, 84–88.

Article  Google Scholar 

Nagano, T., Tachihara, M., & Nishimura, Y. (2018). Mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and a potential treatment strategy. Cells, 7, 212.

Article  CAS  Google Scholar 

Brabletz, T., Kalluri, R., Nieto, A., & Weinberg, R. A. (2018). EMT in cancer. Nature Reviews. Cancer, 18, 128–134.

Article  CAS  Google Scholar 

Guarino, M., Rubino, B., & Ballabio, G. (2007). The role of epithelial-mesenchymal transition in cancer pathology. Pathology, 39, 305–318.

Article  CAS  Google Scholar 

Acloque, H., Thierry, J. P., & Nieto, M. A. (2008). The physiology and pathology of the EMT. EMBO Reports, 9, 322–326.

Article  CAS  Google Scholar 

Migault, M., Sapkota, S., & Bracken, C. P. (2022). Transcriptional and post-translational control of epithelial-mesenchymal plasticity: why so many regulators? Cellular and Molecular Life Sciences, 79, 182.

Article  CAS  Google Scholar 

Brabletz, S., Schuhwerk, H., Brabletz, T., & Stwemmler, M. P. (2021). Dynamic EMT: a multi-tool for tumor progression. The EMBO Journal, 40, e108647.

Article  CAS  Google Scholar 

Fedele, M., Sgarra, R., Battista, S., Cerchia, L., & Manfioletti, G. (2022). The epithelial-mesenchymal transition at the crossroads between metabolism and tumor progression. International Journal of Molecular Sciences, 23, 800.

Article  CAS  Google Scholar 

Rusinova, I., Forster, S., Yu, S., Kannan, A., Masse, M., Cummings, H., et al. (2012). INTERFEROMEv2.0: an updated database of annotated interferon regulated genes. Nucleic Acids Research, 41, D1040–D1046.

Article  Google Scholar 

Olmelda, D., Moreno-Bueno, G., Flores, J. M., Fabra, A., Portillo, F., & Cano, A. (2007). SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Research, 67, 11721–11731.

Article  Google Scholar 

Krebs, A. M., Mitschke, J., Losada, M. L., Schmalhofer, O., Berries, M., Busch, H., et al. (2017). The EMT-activator ZEB1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology, 19, 518–529.

Article  CAS  Google Scholar 

Denecker, G., Vandamme, N., Akay, O., Koludrovic, D., Taminau, J., Lemeire, K., et al. (2014). Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death and Differentiation, 21, 1250–1261.

Article  CAS  Google Scholar 

Tang, X., Sui, X., Weng, L., & Liu, Y. (2021). SNAIL1: linking tumor metastasis to immune evasion. Frontiers in Immunology, 12, 724200.

Article  CAS  Google Scholar 

Vuletic, A., Matinovic, K. M., Miletic, N. T., Zoidakis, J., Castellvi-Bel, S., & Cavic, M. (2021). Cross-talk between tumor cells undergoing epithelial to mesenchymal transitionand natural killer cells in tumor microenvironment in colorectalcancer. Frontiers in Cell and Developmental Biology, 9, 750022.

Article  Google Scholar 

Greaves, D., & Calle, Y. (2022). Epithelial mesenchymal transition and associated invasive adhesions in solid and haematological tumours. Cells, 11, 649.

Article  CAS  Google Scholar 

Maniotis, A. J., Folberg, R., Hess, A., Seftor, E. A., Gardner, L. M. G., Peer, J., et al. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. The American Journal of Pathology, 155, 739–752.

Article  CAS  Google Scholar 

Döme, B., Hendrix, M. J. C., Paku, S., Tovari, J., & Tímár, J. (2007). Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. The American Journal of Pathology, 170, 1–15.

Article  Google Scholar 

Hendrix, M. J. C., Seftor, E. A., Hess, A. R., & Seftor, R. E. B. (2003). Vasculogenic mimicry and tumour cell plasticity: lessons from melanoma. Nature Reviews. Cancer, 3, 411–421.

Article  CAS  Google Scholar 

Bittner, M., Meltzer, P., Chen, Y., Jang, Y., Seftor, E. A., Hendrix, M. J. C., et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression: shifting from a continous spectrum to distinct biological entries. Nature, 406, 536–540.

Article  CAS  Google Scholar 

Postovit, L.-M., Margaryan, N. V., Seftor, E. A., Kirschmann, D. A., Lipavsky, A., Wheaton, W. W., et al. (2008). Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggresive cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 4329–4334.

Article  CAS  Google Scholar 

Folberg, R., & Maniotis, A. J. (2004). Vasculogenic mimicry. APMIS, 112, 508–525.

Article  Google Scholar 

Seftor, R. E. B., Hess, E. A., Seftor, E. A., Kirschmann, D. A., Hardy, K. M., Margaryan, N. V., & Hendrix, M. J. C. (2012). Tumor cell vasculogenic mimicry. From controversy to therapeutic promise. The American Journal of Pathology, 181, 1115–1125.

Article  CAS  Google Scholar 

Hess, A. R., Margaryan, N. V., Seftor, E. A., & Hendrix, M. J. C. (2007). Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Developmental Dynamics, 236, 3283–3296.

Article  CAS  Google Scholar 

Hess, A. R., Postovit, L.-M., Margaryan, N. V., Seftor, E. A., Schneider, G. B., Seftor, R. E. B., Nickoloff, B. J., & Hendrix, M. J. C. (2005). Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Research, 65, 9851–9860.

Article  CAS  Google Scholar 

Sun, T., Zhao, N., Zhao, X. L., Gu, Q., Zhang, S. W., Che, N., et al. (2010). Expression and functional significance of TWIST1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Cancer Research, 51, 545–556.

CAS  Google Scholar 

Wang, J. Y., Sun, T., Zhao, X. L., Zhang, S. W., Zhan, D. F., Gu, Q., et al. (2008). Functional significance of VEGF-A in human ovarian carcinoma: role in vasculogenic mimicry. Cancer Biology & Therapy, 7, 758–766.

Article  CAS  Google Scholar 

Strizzi, L., Hardy, K. M., Seftor, E. A., Costa, F. F., Kirschmann, D. A., Seftor, R. E. B., et al. (2009). Development and cancer: at the crossroads of Nodal and Notch signaling. Cancer Research, 69, 7131–7134.

Article  CAS  Google Scholar 

Hardy, K. M., Kirschmann, D. A., Seftor, E. A., Margaryan, N. V., Postovit, L. M., Strizzi, L., & Hendrix, M. J. C. (2010). Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype. Cancer Research, 70, 10340–10350.

Article  CAS  Google Scholar 

Wei, X., Chen, Y., Jiang, X., Peng, M., Liu, Y., Mo, Y., et al. (2021). Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Molecular Cancer, 20, 7.

Article 

留言 (0)

沒有登入
gif