Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution

Marjanovic, N. D., Hofree, M., Chan, J. E., Canner, D., Wu, K., Trakala, M., et al. (2020). Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell, 38(2), 229–246 e213. https://doi.org/10.1016/j.ccell.2020.06.012

Huang, S. (2021). The logic of cancer treatment: why it is so hard to cure cancer. In B. Strauss et al. (Eds.), Rethinking cancer: A new paradigm for the post-genomics era (pp. 63–128). MIT Press Book.

De Angelis, M. L., Francescangeli, F., La Torre, F., & Zeuner, A. (2019). Stem cell plasticity and dormancy in the development of cancer therapy resistance. Frontiers in Oncology, 9, 626. https://doi.org/10.3389/fonc.2019.00626

Article  PubMed  PubMed Central  Google Scholar 

Huang, S. (2021). Reconciling non-genetic plasticity with somatic evolution in cancer. Trends Cancer, 7(4), 309–322. https://doi.org/10.1016/j.trecan.2020.12.007

Article  CAS  PubMed  Google Scholar 

Huang, S., & Kauffman, S. (2013). How to escape the cancer attractor: Rationale and limitations of multi-target drugs. Seminars in Cancer Biology, 23(4), 270–278. https://doi.org/10.1016/j.semcancer.2013.06.003

Article  CAS  PubMed  Google Scholar 

Chen, J., Li, Y., Yu, T. S., McKay, R. M., Burns, D. K., Kernie, S. G., et al. (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 488(7412), 522–526. https://doi.org/10.1038/nature11287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kreso, A., O’Brien, C. A., van Galen, P., Gan, O. I., Notta, F., Brown, A. M., et al. (2013). Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 339(6119), 543–548. https://doi.org/10.1126/science.1227670

Article  CAS  PubMed  Google Scholar 

Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594. https://doi.org/10.1016/j.cell.2010.04.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaffer, S. M., Dunagin, M. C., Torborg, S. R., Torre, E. A., Emert, B., Krepler, C., et al. (2017). Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature, 546(7658), 431–435. https://doi.org/10.1038/nature22794

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dembinski, J. L., & Krauss, S. (2009). Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clinical & Experimental Metastasis, 26(7), 611–623. https://doi.org/10.1007/s10585-009-9260-0

Article  CAS  Google Scholar 

Ebinger, S., Ozdemir, E. Z., Ziegenhain, C., Tiedt, S., Castro Alves, C., Grunert, M., et al. (2016). Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell, 30(6), 849–862. https://doi.org/10.1016/j.ccell.2016.11.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Francescangeli, F., Contavalli, P., De Angelis, M. L., Careccia, S., Signore, M., Haas, T. L., et al. (2020). A pre-existing population of ZEB2(+) quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer. Journal of Experimental & Clinical Cancer Research, 39(1), 2. https://doi.org/10.1186/s13046-019-1505-4

Article  CAS  Google Scholar 

Holtz, M. S., Forman, S. J., & Bhatia, R. (2005). Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia, 19(6), 1034–1041. https://doi.org/10.1038/sj.leu.2403724

Article  CAS  PubMed  Google Scholar 

Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell, 140(1), 62–73. https://doi.org/10.1016/j.cell.2009.12.007

Article  CAS  PubMed  Google Scholar 

Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141(1), 69–80. https://doi.org/10.1016/j.cell.2010.02.027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeuner, A., Francescangeli, F., Contavalli, P., Zapparelli, G., Apuzzo, T., Eramo, A., et al. (2014). Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer. Cell Death and Differentiation, 21(12), 1877–1888. https://doi.org/10.1038/cdd.2014.105

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zowada, M. K., Tirier, S. M., Dieter, S. M., Krieger, T. G., Oberlack, A., Chua, R. L., et al. (2021). Functional states in tumor-initiating cell differentiation in human colorectal cancer. Cancers (Basel), 13(5), 1097. https://doi.org/10.3390/cancers13051097

Rainusso, N., Man, T.-K., Lau, C. C., Hicks, J., Shen, J. J., Yu, A., et al. (2011). Identification and gene expression profiling of tumor-initiating cells isolated from human osteosarcoma cell lines in an orthotopic mouse model. Cancer Biology & Therapy, 12(4), 278–287.

Article  CAS  Google Scholar 

Gao, M. Q., Choi, Y. P., Kang, S., Youn, J. H., & Cho, N. H. (2010). CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene, 29(18), 2672–2680. https://doi.org/10.1038/onc.2010.35

Article  CAS  PubMed  Google Scholar 

Lennon, J. T., den Hollander, F., Wilke-Berenguer, M., & Blath, J. (2021). Principles of seed banks and the emergence of complexity from dormancy. Nature Communications, 12(1), 4807. https://doi.org/10.1038/s41467-021-24733-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endo, H., & Inoue, M. (2019). Dormancy in cancer. Cancer Science, 110(2), 474–480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Recasens, A., & Munoz, L. (2019). Targeting cancer cell dormancy. Trends in Pharmacological Sciences, 40(2), 128–141. https://doi.org/10.1016/j.tips.2018.12.004

Article  CAS  PubMed  Google Scholar 

Baldominos, P., Barbera-Mourelle, A., Barreiro, O., Huang, Y., Wight, A., Cho, J. W., et al. (2022). Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell, 185(10), 1694-1708 e1619. https://doi.org/10.1016/j.cell.2022.03.033

Article  CAS  PubMed  Google Scholar 

Fluegen, G., Avivar-Valderas, A., Wang, Y., Padgen, M. R., Williams, J. K., Nobre, A. R., et al. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 19(2), 120–132. https://doi.org/10.1038/ncb3465

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohta, Y., Fujii, M., Takahashi, S., Takano, A., Nanki, K., Matano, M., et al. (2022). Cell-matrix interface regulates dormancy in human colon cancer stem cells. Nature, 608(7924), 784–794. https://doi.org/10.1038/s41586-022-05043-y

Article  CAS  PubMed  Google Scholar 

Xie, X. P., Laks, D. R., Sun, D., Ganbold, M., Wang, Z., Pedraza, A. M., et al. (2022). Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Developmental Cell, 57(1), 32-46 e38. https://doi.org/10.1016/j.devcel.2021.12.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harper, K. L., Sosa, M. S., Entenberg, D., Hosseini, H., Cheung, J. F., Nobre, R., et al. (2016). Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature, 540(7634), 588–592. https://doi.org/10.1038/nature20609

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, Z., Ding, J., Ma, Z., Sun, R., Seoane, J. A., Scott Shaffer, J., et al. (2019). Quantitative evidence for early metastatic seeding in colorectal cancer. Nature Genetics, 51(7), 1113–1122. https://doi.org/10.1038/s41588-019-0423-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawson, D. A., Bhakta, N. R., Kessenbrock, K., Prummel, K. D., Yu, Y., Takai, K., et al. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526(7571), 131–135. https://doi.org/10.1038/nature15260

Article  CAS  PubMed  PubMed Central  Google Scholar 

Risson, E., Nobre, A. R., Maguer-Satta, V., & Aguirre-Ghiso, J. A. (2020). The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nature Cancer, 1(7), 672–680. https://doi.org/10.1038/s43018-020-0088-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguirre-Ghiso, J. A. (2021). Translating the science of cancer dormancy to the clinic. Cancer Research, 81(18), 4673–4675. https://doi.org/10.1158/0008-5472.CAN-21-1407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shepherd, T. G., & Dick, F. A. (2022). Principles of dormancy evident in high-grade serous ovarian cancer. Cell Division, 17(1), 2. https://doi.org/10.1186/s13008-022-00079-y

Article  PubMed  PubMed Central  Google Scholar 

Prager, B. C., Bhargava, S., Mahadev, V., Hubert, C. G., & Rich, J. N. (2020). Glioblastoma stem cells: Driving resilience through chaos. Trends Cancer, 6(3), 223–235. https://doi.org/10.1016/j.trecan.2020.01.009

Article  PubMed  PubMed Central  Google Scholar 

Maynard, A., McCoach, C. E., Rotow, J. K., Harris, L., Haderk, F., Kerr, D. L., et al. (2020). Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell, 182(5), 1232–1251 e1222. https://doi.org/10.1016/j.cell.2020.07.017

De Angelis, M. L., Francescangeli, F., & Zeuner, A. (2019). Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: New challenges and therapeutic opportunities. Cancers (Basel), 11(10), 1569. https://doi.org/10.3390/cancers11101569

Huang, S. (2021). The logic of cancer treatment: treatment-induced progression, hyper-progression, and the Nietzsche effect. In B. Strauss, M. Bertolaso, I. Ernberg, & M. J. Bissell (Eds.), Rethinking Cancer: A New Paradigm for the Postgenomics Era (pp. 62): The MIT Press.

Goddard, E. T., Bozic, I., Riddell, S. R., & Ghajar, C. M. (2018). Dormant tumour cells, their niches and the influence of immunity. Nature Cell Biology, 20(11), 1240–1249.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif