Context-specific regulation of extracellular vesicle biogenesis and cargo selection

Johnstone, R. M., Mathew, A., Mason, A. B. & Teng, K. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J. Cell Physiol. 147, 27–36 (1991).

Article  CAS  Google Scholar 

Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985).

Article  CAS  Google Scholar 

Harding, C., Heuser, J. & Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35, 256–263 (1984).

CAS  Google Scholar 

van Niel, G. et al. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 23, 369–382 (2022).

Article  Google Scholar 

Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017).

Article  CAS  Google Scholar 

van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

Article  Google Scholar 

Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

Article  CAS  Google Scholar 

Ma, L. et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25, 24–38 (2015). This work reveals the presence of bulges containing internal vesicles along the retraction fibres of migrating cells. These structures, termed ‘migrasomes’, are released into the extracellular space as a type of large EV.

Article  CAS  Google Scholar 

Atkin-Smith, G. K. et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat. Commun. 6, 7439 (2015).

Article  Google Scholar 

Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

Article  Google Scholar 

Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A. & Weaver, A. M. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun. 6, 7164 (2015).

Article  CAS  Google Scholar 

Sinha, S. et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J. Cell Biol. 214, 197–213 (2016).

Article  CAS  Google Scholar 

DeRita, R. M. et al. Tumor-derived extracellular vesicles require β1 integrins to promote anchorage-independent growth. iScience 14, 199–209 (2019).

Article  CAS  Google Scholar 

Kia, V., Mortazavi, Y., Paryan, M., Biglari, A. & Mohammadi-Yeganeh, S. Exosomal miRNAs from highly metastatic cells can induce metastasis in non-metastatic cells. Life Sci. 220, 162–168 (2019).

Article  CAS  Google Scholar 

Kriebel, P. W. et al. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J. Cell Biol. 217, 2891–2910 (2018).

Article  CAS  Google Scholar 

French, K. C., Antonyak, M. A. & Cerione, R. A. Extracellular vesicle docking at the cellular port: extracellular vesicle binding and uptake. Semin. Cell Dev. Biol. 67, 48–55 (2017).

Article  CAS  Google Scholar 

Mathieu, M., Martin-Jaular, L., Lavieu, G. & Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

Article  CAS  Google Scholar 

Schwager, S. C. & Reinhart-King, C. A. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation. Curr. Top. Membr. 86, 255–278 (2020).

Article  CAS  Google Scholar 

Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

Article  CAS  Google Scholar 

Jackson, C. E., Scruggs, B. S., Schaffer, J. E. & Hanson, P. I. Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys. J. 113, 1342–1352 (2017).

Article  CAS  Google Scholar 

Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

Article  CAS  Google Scholar 

Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat. Cell Biol. 4, 394–398 (2002).

Article  CAS  Google Scholar 

Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 3, 893–905 (2002).

Article  CAS  Google Scholar 

Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

Article  CAS  Google Scholar 

Raiborg, C., Wesche, J., Malerod, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci. 119, 2414–2424 (2006).

Article  CAS  Google Scholar 

Coonrod, E. M. & Stevens, T. H. The yeast vps class E mutants: the beginning of the molecular genetic analysis of multivesicular body biogenesis. Mol. Biol. Cell 21, 4057–4060 (2010).

Article  CAS  Google Scholar 

Colombo, M. et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553–5565 (2013).

CAS  Google Scholar 

Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat. Rev. Mol. Cell Biol. 11, 556–566 (2010).

Article  CAS  Google Scholar 

Boura, E., Ivanov, V., Carlson, L. A., Mizuuchi, K. & Hurley, J. H. Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers. J. Biol. Chem. 287, 28144–28151 (2012).

Article  CAS  Google Scholar 

Booth, A., Marklew, C. J., Ciani, B. & Beales, P. A. The influence of phosphatidylserine localisation and lipid phase on membrane remodelling by the ESCRT-II/ESCRT-III complex. Faraday Discuss. 232, 188–202 (2021).

Article  Google Scholar 

Levental, I., Levental, K. R. & Heberle, F. A. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol. 30, 341–353 (2020).

Article  CAS  Google Scholar 

Llorente, A. et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta 1831, 1302–1309 (2013).

Article  CAS  Google Scholar 

Larios, J., Mercier, V., Roux, A. & Gruenberg, J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J. Cell Biol. 19, e201904113 (2020). This work demonstrates that expression of an activated ALIX mutant is sufficient to recruit ESCRT-III to endosomes and drive the formation of tetraspanin-containing small EVs.

Google Scholar 

Lee, I. H., Kai, H., Carlson, L. A., Groves, J. T. & Hurley, J. H. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proc. Natl Acad. Sci. USA 112, 15892–15897 (2015).

Article  CAS  Google Scholar 

Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015).

Article  CAS  Google Scholar 

Bertin, A. et al. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat. Commun. 11, 2663 (2020).

Article  CAS  Google Scholar 

Adell, M. A. Y. et al. Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. eLife 6, e31652 (2017).

Article  Google Scholar 

Edgar, J. R., Eden, E. R. & Futter, C. E. Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 15, 197–211 (2014).

Article  Google Scholar 

Baietti, M. F. et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012). This work reveals the role of syntenin as an adaptor that captures cargoes like syndecan and CD63 for incorporation into exosomes formed through an ALIX–ESCRT pathway.

Article  CAS  Google Scholar 

Stepp, M. A., Pal-Ghosh, S., Tadvalkar, G. & Pajoohesh-Ganji, A. Syndecan-1 and its expanding list of contacts. Adv. Wound Care 4, 235–249 (2015).

Article  Google Scholar 

Ghossoub, R. et al. Tetraspanin-6 negatively regulates exosome production. Proc. Natl Acad. Sci. USA 117, 5913–5922 (2020).

Article  CAS  Google Scholar 

Elias, R. D. et al. Proline-rich domain of human ALIX contains multiple TSG101-UEV interaction sites and forms phosphorylation-mediated reversible amyloids. Proc. Natl Acad. Sci. USA 117, 24274–24284 (2020).

Article  CAS  Google Scholar 

Imjeti, N. S. et al. Syntenin mediates SRC function in exosomal cell-to-cell communication. Proc. Natl Acad. Sci. USA 114, 12495–12500 (2017). This work demonstrates that SRC regulates the syndecan–syntenin–ALIX pathway of exosome biogenesis by phosphorylating syndecan 1 and syntenin.

Article  CAS  Google Scholar 

Ghossoub, R. et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun. 5, 3477 (2014).

Article  Google Scholar 

Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009). This work reveals a pathway in which ARF6–PLD2 activation facilitates large ectosome formation by altering myosin activity.

Article  CAS  Google Scholar 

Rider, M. A. et al. The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology 516, 55–70 (2018).

Article  CAS 

留言 (0)

沒有登入
gif